Koujin TAKEDAAssociate Professor

■Researcher basic information

Organization

  • College of Engineering Department of Mechanical Systems Engineering
  • Graduate School of Science and Engineering(Master's Program) Major in Computer and Information Sciences
  • Graduate School of Science and Engineerin(Doctoral Program) Major in Society's Infrastructure Systems Science
  • Faculty of Applied Science and Engineering Domain of Mechanical Systems Engineering

Research Areas

  • Natural sciences, Mathematical physics and basic theory, Mathematical Physics/Fundamental Theory of Physical Properties
  • Informatics, Information theory, Fundamental Informatics

Degree

  • 2001年03月 博士(理学)(東京大学)

Educational Background

  • The University of Tokyo, Graduate School, Division of Science, Department of Physics
  • The University of Tokyo, Faculty of Science, Department of Physics

Member History

  • Apr. 2022 - Present, Associate Editor, Journal of the Physical Society of Japan, The Physical Society of Japan
  • Dec. 2021 - Present, Associate Editor, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, The Institute of Electronics, Information and Communication Engineers (IEICE)
  • Oct. 2012 - Sep. 2013, Steering committee member of Division 11, The Physical Society of Japan

■Research activity information

Paper

  • Extraction and evaluation of cell nuclei images in label-free phase contrast microscopy enabled by machine learning using a data analysis platform Usiigaci
    Kazuaki Nagayama; Miku Ohashi; Hotaka Dangi; Koujin Takeda, Corresponding
    Transactions of the Japan Society of Mechanical Engineers, 08 Nov. 2024, [Reviewed]
  • 1-Regularized ICA: A Novel Method for Analysis of Task-Related fMRI Data
    Endo, Y.; Takeda, K., Last
    Neural Computation, 11 Oct. 2024, [Reviewed]
  • Performance Evaluation of Matrix Factorization for fMRI Data
    Endo, Y.; Takeda, K., Last, MIT Press
    Neural Computation, 12 Dec. 2023, [Reviewed]
  • Generalization of generative model for neuronal ensemble inference method
    Shun Kimura; Koujin Takeda, Last, Various brain functions that are necessary to maintain life activities materialize through the interaction of countless neurons. Therefore, it is important to analyze functional neuronal network. To elucidate the mechanism of brain function, many studies are being actively conducted on functional neuronal ensemble and hub, including all areas of neuroscience. In addition, recent study suggests that the existence of functional neuronal ensembles and hubs contributes to the efficiency of information processing. For these reasons, there is a demand for methods to infer functional neuronal ensembles from neuronal activity data, and methods based on Bayesian inference have been proposed. However, there is a problem in modeling the activity in Bayesian inference. The features of each neuron’s activity have non-stationarity depending on physiological experimental conditions. As a result, the assumption of stationarity in Bayesian inference model impedes inference, which leads to destabilization of inference results and degradation of inference accuracy. In this study, we extend the range of the variable for expressing the neuronal state, and generalize the likelihood of the model for extended variables. By comparing with the previous study, our model can express the neuronal state in larger space. This generalization without restriction of the binary input enables us to perform soft clustering and apply the method to non-stationary neuroactivity data. In addition, for the effectiveness of the method, we apply the developed method to multiple synthetic fluorescence data generated from the electrical potential data in leaky integrated-and-fire model., PLOS
    PLoS ONE, 27 Jun. 2023, [Reviewed]
  • Automatic Hyperparameter Tuning in Sparse Matrix Factorization
    Kawasumi, R.; Takeda, K., Last, MIT Press
    Neural Computation, 12 May 2023, [Reviewed]
  • Improved neuronal ensemble inference with generative model and MCMC
    Shun Kimura; Keisuke Ota; Koujin Takeda, Last, Abstract

    Neuronal ensemble inference is a significant problem in the study of biological neural networks. Various methods have been proposed for ensemble inference from experimental data of neuronal activity. Among them, Bayesian inference approach with generative model was proposed recently. However, this method requires large computational cost for appropriate inference. In this work, we give an improved Bayesian inference algorithm by modifying update rule in Markov chain Monte Carlo method and introducing the idea of simulated annealing for hyperparameter control. We compare the performance of ensemble inference between our algorithm and the original one, and discuss the advantage of our method., IOP Publishing
    Journal of Statistical Mechanics: Theory and Experiment, Jun. 2021, [Reviewed]
  • Belief Propagation for Maximum Coverage on Weighted Bipartite Graph and Application to Text Summarization
    Kitano, H.; Takeda, K., Last
    Journal of the Physical Society of Japan, Mar. 2020, [Reviewed]
  • Improved algorithm for neuronal ensemble inference by Monte Carlo method
    Shun Kimura; Koujin Takeda, Last, Springer
    Proceedings of NetSci-X2020, Jan. 2020, [Reviewed]
  • Variational Bayes method for matrix factorization to two sparse factorized matrices
    Tomoki Tamai; Koujin Takeda, Last
    International Symposium on Information Theory and its Applications (ISITA2018), Oct. 2018, [Reviewed]
  • Approximate method of variational Bayesian matrix factorization/completion with sparse prior
    Ryota Kawasumi; Koujin Takeda, We derive the analytical expression of a matrix factorization/completion solution by the variational Bayes method, under the assumption that the observed matrix is originally the product of low-rank, dense and sparse matrices with additive noise. We assume the prior of a sparse matrix is a Laplace distribution by taking matrix sparsity into consideration. Then we use several approximations for the derivation of a matrix factorization/completion solution. By our solution, we also numerically evaluate the performance of a sparse matrix reconstruction in matrix factorization, and completion of a missing matrix element in matrix completion., Institute of Physics Publishing
    Journal of Statistical Mechanics: Theory and Experiment, 15 May 2018, [Reviewed]
  • Approximate Method of Variational Bayesian Matrix Factorization with Sparse Prior
    Ryota Kawasumi; Koujin Takeda, Last
    IEEE International Workshop on Machine Learning for Signal Processing (MLSP2017), Sep. 2017, [Reviewed]
  • Efficient Board Feature Extraction for Strategy Improvement in Computer Go               
    Hayato Mitsuoka; Koujin Takeda, Last
    Nonlinear Theory and Its Applications (NOLTA2016), Nov. 2016, [Reviewed]
  • An Alternative to Basic Log-likelihood for Bayesian Network Clustering               
    Rei Oshino; Koujin Takeda, Last
    Nonlinear Theory and Its Applications (NOLTA2016), Nov. 2016, [Reviewed]
  • Reconstruction algorithm in compressed sensing based on maximum a posteriori estimation
    Koujin Takeda; Yoshiyuki Kabashima, Lead, We propose a systematic method for constructing a sparse data reconstruction algorithm in compressed sensing at a relatively low computational cost for general observation matrix. It is known that the cost of l(1)-norm minimization using a standard linear programming algorithm is O(N-3). We show that this cost can be reduced to O(N-2) by applying the approach of posterior maximization. Furthermore, in principle, the algorithm from our approach is expected to achieve the widest successful reconstruction region, which is evaluated from theoretical argument. We also discuss the relation between the belief propagation-based reconstruction algorithm introduced in preceding works and our approach., IOP PUBLISHING LTD
    Journal of Physics: Conference Series (proceedings of ICSG2013), 2013, [Reviewed], [Invited]
  • Sparse-Matrix-Based Compressed Sensing for Spectrum Sensing in Flexible Wireless
    D. Lee; Y. Kabashima; K.Takeda; T. Yamada; K. Akabane; K. Uehara
    18th Asia-Pacific Conference on Communications (APCC 2012), Oct. 2012, [Reviewed]
  • A study of the universal threshold in the L1 recovery by statistical mechanics
    Koujin Takeda; Yoshiyuki Kabashima, Lead
    46th Conference of Information Sciences and Systems(CISS2012), Mar. 2012, [Invited]
  • Transfer operator analysis of the parallel dynamics of disordered Ising chains
    Anthony C. C. Coolen; Koujin Takeda, We study the synchronous stochastic dynamics of the random field and random bond Ising chain. For this model the generating functional analysis method of De Dominicis leads to a formalism with transfer operators, similar to transfer matrices in equilibrium studies, but with dynamical paths of spins and (conjugate) fields as arguments, as opposed to replicated spins. In the thermodynamic limit the macroscopic dynamics is captured by the dominant eigenspace of the transfer operator, leading to a relatively simple and transparent set of equations that are easy to solve numerically. Our results are supported excellently by numerical simulations., TAYLOR & FRANCIS LTD
    PHILOSOPHICAL MAGAZINE, 2012, [Reviewed]
  • Statistical mechanical assessment of a reconstruction limit of compressed sensing: Toward theoretical analysis of correlated signals
    K. Takeda; Y. Kabashima, Lead, We provide a scheme for exploring the reconstruction limits of compressed sensing by minimizing the general cost function under the random measurement constraints for generic correlated signal sources. Our scheme is based on the statistical mechanical replica method for dealing with random systems. As a simple but non-trivial example, we apply the scheme to a sparse autoregressive model, where the first differences in the input signals of the correlated time series are sparse, and evaluate the critical compression rate for a perfect reconstruction. The results are in good agreement with a numerical experiment for a signal reconstruction. Copyright (C) EPLA, 2011, EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY
    Europhysics Letters, Jul. 2011
  • Statistical mechanical analysis of a hierarchical random code ensemble in signal processing
    Obuchi, T.; Takahashi, K.; Takeda, K., Corresponding
    Journal of Physics A: Mathematical and Theoretical, Apr. 2011, [Reviewed]
  • Replica symmetry breaking, complexity and spin representation in the generalized random energy model
    Obuchi, T.; Takahashi, K.; Takeda, K.
    Journal of Physics A: Mathematical and Theoretical, Nov. 2010, [Reviewed]
  • Statistical Mechanical Analysis of Compressed Sensing Utilizing Correlated Compression Matrix
    Koujin Takeda; Yoshiyuki Kabashima, We investigate a reconstruction limit of compressed sensing for a reconstruction scheme based on the L(1)-norm minimization utilizing a correlated compression matrix with a statistical mechanics method. We focus on the compression matrix modeled as the Kronecker-type random matrix studied in research on multiple-input multiple-output wireless communication systems. We found that strong one-dimensional correlations between expansion bases of original information slightly degrade reconstruction performance., IEEE
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, [Reviewed]
  • Spectral density of random graphs with topological constraints
    Tim Rogers; Conrad Pérez Vicente; Koujin Takeda; Isaac Pérez Castillo, The spectral density of random graphs with topological constraints is analysed using the replica method. We consider graph ensembles featuring generalized degree-degree correlations, as well as those with a community structure. In each case, a formal exact solution is found for the spectral density in the form of consistency equations depending on the statistical properties of the graph ensemble in question. We highlight the effect of these topological constraints on the resulting spectral density. © 2010 IOP Publishing Ltd.
    Journal of Physics A: Mathematical and Theoretical, 2010, [Reviewed]
  • Statistical mechanical analysis of the Kronecker channel model for multiple-input multiple-output wireless communication
    Atsushi Hatabu; Koujin Takeda; Yoshiyuki Kabashima, The Kronecker channel model of wireless communication is analyzed using statistical mechanics methods. In the model, spatial proximities among transmission/reception antennas are taken into account as certain correlation matrices, which generally yield nontrivial dependence among symbols to be estimated. This prevents accurate assessment of the communication performance by naively using a previously developed analytical scheme based on a matrix integration formula. In order to resolve this difficulty, we develop a formalism that can formally handle the correlations in Kronecker models based on the known scheme. Unfortunately, direct application of the developed scheme is, in general, practically difficult. However, the formalism is still useful, indicating that the effect of the correlations generally increase after the fourth order with respect to correlation strength. Therefore, the known analytical scheme offers a good approximation in performance evaluation when the correlation strength is sufficiently small. For a class of specific correlation, we show that the performance analysis can be mapped to the problem of one-dimensional spin systems in random fields, which can be investigated without approximation by the belief propagation algorithm., AMER PHYSICAL SOC
    PHYSICAL REVIEW E, Dec. 2009, [Reviewed]
  • Dynamical correlations in the Sherrington-Kirkpatrick model in a transverse field
    Takahashi, K.; Takeda, K.
    Physical Review B - Condensed Matter and Materials Physics, Nov. 2008, [Reviewed]
  • Cavity approach to the spectral density of sparse symmetric random matrices
    Tim Rogers; Isaac Perez Castillo; Reimer Kuehn; Koujin Takeda, The spectral density of various ensembles of sparse symmetric random matrices is analyzed using the cavity method. We consider two cases: matrices whose associated graphs are locally treelike, and sparse covariance matrices. We derive a closed set of equations from which the density of eigenvalues can be efficiently calculated. Within this approach, the Wigner semicircle law for Gaussian matrices and the Marcenko-Pastur law for covariance matrices are recovered easily. Our results are compared with numerical diagonalization, showing excellent agreement., AMER PHYSICAL SOC
    PHYSICAL REVIEW E, Sep. 2008
  • Statistical mechanical analysis of the linear vector channel in digital communication
    Koujin Takeda; Atsushi Hatabu; Yoshiyuki Kabashima, Lead, A statistical mechanical framework to analyze linear vector channel models in digital wireless communication is proposed for a large system. The framework is a generalization of that proposed for code-division multiple-access systems in Takeda et al ( 2006 Europhys. Lett. 76 1193) and enables the analysis of the system in which the elements of the channel transfer matrix are statistically correlated with each other. The significance of the proposed scheme is demonstrated by assessing the performance of an existing model of multi-input multi-output communication systems., IOP PUBLISHING LTD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, Nov. 2007, [Reviewed]
  • Numerical study of Thouless-Anderson-Palmer metastable states in three-body Ising spin glasses
    Yukinori Tonosaki; Koujin Takeda; Yoshiyuki Kabashima, The distribution of solutions of the Thouless-Anderson-Palmer equation is studied by extensive numerical experiments for fully connected three-body interaction Ising spin glass models in a level of annealed calculation. A recent study predicted that when the equilibrium state of the system is characterized by one-step replica symmetry breaking, the distribution is described by a Becchi-Rouet-Stora-Tyutin (BRST) supersymmetric solution in the relatively low free energy region, whereas the BRST supersymmetry is broken for higher values of free energy [A. Crisanti , Phys. Rev. B 71, 094202 (2005)]. Our experiments qualitatively reproduce the discriminative behavior of macroscopic variables predicted by the theoretical assessment., AMER PHYSICAL SOC
    PHYSICAL REVIEW B, Mar. 2007, [Reviewed]
  • Possibly exact solution for the multicritical point of finite-dimensional spin glasses
    Hidetoshi Nishimori; Koujin Takeda; Tomohiro Sasamoto, After briefly describing the present status of the spin glass theory, we present a conjecture on the exact location of the multicritical point in the phase diagram of finite-dimensional spin glasses. The theory enables us to understand in a unified way many numerical results for two-, three- and four-dimensional models including the +/- J Ising model, random Potts model, random lattice gauge theory, and random Zq model. It is also suggested from the same theoretical framework that models with symmetric distribution of randomness in exchange interaction have no finite-temperature transition on the square lattice., WORLD SCIENTIFIC PUBL CO PTE LTD
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, Jul. 2006, [Reviewed]
  • Analysis of CDMA systems that are characterized by eigenvalue spectrum
    Takeda, K.; Uda, S.; Kabashima, Y., Lead
    Europhysics Letters, 2006, [Reviewed]
  • Finite-dimensional spin glass and quantum error correcting code               
    Koujin Takeda; Tomohiro Sasamoto; Hidetoshi Nishimori, Lead
    Physica E, Jul. 2005, [Reviewed]
  • Exact location of the multicritical point for finite-dimensional spin glasses: a conjecture
    K Takeda; T Sasamoto; H Nishimori, Lead, We present a conjecture on the exact location of the multicritical point in the phase diagram of spin glass models in finite dimensions. By generalizing our previous work, we combine duality and gauge symmetry for replicated random systems to derive formulae which make it possible to understand all the relevant available numerical results in a unified way. The method applies to non-self-dual lattices as well as to self-dual cases, in the former case of which we derive a relation for a pair of values of multicritical points for mutually-dual lattices. The examples include the +/- J and Gaussian Ising spin glasses on the square, hexagonal and triangular lattices, the Potts and Z(q) models with chiral randomness on these lattices, and the three-dimensional +/- J Ising spin glass and the random plaquette gauge model., IOP PUBLISHING LTD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, Apr. 2005
  • Self-duality and phase structure of the 4D random-plaquette Z(2) gauge model
    G Arakawa; Ichinose, I; T Matsui; K Takeda, In the present paper, we shall study the 4-dimensional Z(2) lattice gauge model with a random gauge coupling; the random-plaquette gauge model (RPGM). The random gauge coupling at each plaquette takes the value J with the probability 1 - p and -J with p. This model exhibits a confinement-Higgs phase transition. We numerically obtain a phase boundary curve in the (p-T)-plane where T is the "temperature" measured in unit of J/k(B). This model plays an important role in estimating the accuracy threshold of a quantum memory of a toric code. In this paper, we are mainly interested in its "self-duality" aspect, and the relationship with the random-bond Ising model (RBIM) in 2-dimensions. The "self-duality" argument can be applied both for RPGM and RBIM, giving the same duality equations, hence predicting the same phase boundary. The phase boundary curve obtained by our numerical simulation almost coincides with this predicted phase boundary at the high-temperature region. The phase transition is of first order for relatively small values of p < 0.08, but becomes of second order for larger p. The value of p at the intersection of the phase boundary curve and the Nishimori line is regarded as the accuracy threshold of errors in a toric quantum memory. It is estimated as p = 0.110 +/- 0.002, which is very close to the value conjectured by Takeda and Nishimori through the "self-duality" argument. (C) 2004 Elsevier B.V. All rights reserved., ELSEVIER SCIENCE BV
    NUCLEAR PHYSICS B, Mar. 2005, [Reviewed]
  • Nonexponential decay of an unstable quantum system: Small-g-value s-wave decay
    Jittoh, T.; Matsumoto, S.; Sato, J.; Sato, Y.; Takeda, K.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2005
  • Unstable state decay without Exponential Law -small Q value s-wave (sQs) decay -               
    Toshifumi Jittoh; Shigeki Matsumoto; Joe Sato; Yoshio Sato; Koujin Takeda
    Physical Review A, Jan. 2005, [Reviewed]
  • Duality of the Random Model and the Quantum Toric Code
    Koujin Takeda; Hidetoshi Nishimori, Lead, We study the phase diagrams of random models with bimodal randomness, especially the random bond Ising model and the random plaquette gauge model from the viewpoint of quantum information theory. Using Fourier transformation in conjunction with the replica trick, we show that these models have a common structure under duality transformation. This observation enables us to derive a conjecture on the exact location of the multicritical point and lead the accuracy threshold of the toric code, which is one of the topological quantum memories., PHYSICAL SOC JAPAN
    Progress of Theoretical Physics Supplement, 2005, [Reviewed]
  • Duality of the Random Model and the Quantum Toric Code
    Koujin Takeda; Hidetoshi Nishimori, Lead, We study the phase diagrams of random models with bimodal randomness, especially the random bond Ising model and the random plaquette gauge model from the viewpoint of quantum information theory. Using Fourier transformation in conjunction with the replica trick, we show that these models have a common structure under duality transformation. This observation enables us to derive a conjecture on the exact location of the multicritical point and lead the accuracy threshold of the toric code, which is one of the topological quantum memories., PHYSICAL SOC JAPAN
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN SUPPLEMENT, 2005, [Reviewed]
  • Self-dual random-plaquette gauge model and the quantum toric code
    K Takeda; H Nishimori, We study the four-dimensional Z(2) random-plaquette lattice gauge theory as a model of topological quantum memory, the toric code in particular. In this model, the procedure of quantum error correction works properly in the ordered (Higgs) phase, and phase boundary between the ordered (Higgs) and disordered (confinement) phases gives the accuracy threshold of error correction. Using self-duality of the model in conjunction with the replica method, we show that this model has exactly the same mathematical structure as that of the two-dimensional random-bond Ising model, which has been studied very extensively. This observation enables us to derive a conjecture on the exact location of the multicritical point (accuracy threshold) of the model, p(c) = 0.889972.... and leads to several nontrivial results including bounds on the accuracy threshold in three dimensions. (C) 2004 Elsevier B.V. All rights reserved., ELSEVIER SCIENCE BV
    NUCLEAR PHYSICS B, May 2004
  • Self-dual Random-plaquette Gauge Theory and Accuracy Threshold of the Toric Code               
    Koujin Takeda; Hidetoshi Nishimori, Lead
    ERATO conference on Quantum Information Science (EQIS2003), Sep. 2003, [Reviewed]
  • Quantum spin chains with nonlocally-correlated random exchange coupling and random-mass Dirac fermions
    K Takeda; Ichinose, I, Lead, S= (1)/(2) quantum spin chains and ladders with random exchange coupling are studied by using an effective low-energy field theory and transfer matrix methods. Effects of the nonlocal correlations of exchange couplings are investigated numerically. In particular we calculate localization length of magnons, density of states, correlation functions and multifractal exponents as a function of the correlation length of the exchange couplings. As the correlation length increases, there occurs a "phase transition" and the above quantities exhibit different behaviors in two phases. This suggests that the strong-randomness fixed point of the random spin chains and random-singlet state get unstable by the long-range correlations of the random exchange couplings. (C) 2003 Elsevier B.V. All rights reserved., ELSEVIER SCIENCE BV
    NUCLEAR PHYSICS B, Jul. 2003, [Reviewed]
  • Effects of correlated noise in random-mass Dirac fermions
    K Takeda; Ichinose, I, Lead, In the previous paper, we studied the random-mass Dirac fermion in one dimension by using the transfer-matrix methods. We furthermore employed the imaginary vector potential methods for calculating the localization lengths. In particular, we investigated effects of the nonlocal but short-range correlations of the random mass. In this paper, we shall study effects of the long-range correlations of the random mass especially on the delocalization transition and singular behaviors at the band center. We calculate localization lengths and density of states for various nonlocally correlated random mass. We show that there occurs a "phase transition" as the correlation length of the random Dirac mass is varied. The Thouless formula, which relates the density of states and the localization lengths, plays an important role in our investigation., PHYSICAL SOC JAPAN
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, Sep. 2002, [Reviewed]
  • Random-mass Dirac fermions in an imaginary vector potential: Delocalization transition and localization length
    K Takeda; Ichinose, I, Lead, In this paper, one dimensional system of Dirac fermions with a random-varying mass is studied by the transfer-matrix method. We investigate the effects of nonlocal correlation of the spatial-varying Dirac mass on the delocalization transition. In particular, vc numerically calculate both the "typical" and "mean" localization lengths as a function of energy and the correlation length of the random mass. To this end i.e introduce Lin imaginary vector potential as suggested by Hatano and Nelson and solve the eigenvalue problem. Numerical calculations are in good agreement with the results of the analytical calculations. We obtain a relation between the localization length of states and the correlation length of the random mass., PHYSICAL SOC JAPAN
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, Dec. 2001, [Reviewed]
  • Localized and extended states in one-dimensional disordered system: random-mass Dirac fermions
    K Takeda; T Tsunmaru; Ichinose, I; M Kimura, Lead, A system of Dirac fermions with random-varying mass is studied in detail. We reformulate the system by transfer-matrix formalism. Eigenvalues and wave functions are obtained numerically for various configurations of random telegraphic mass m(x). Localized and extended states are identified. For quasi-periodic m(x), low-energy wave functions are also quasi-periodic and extended, though we are not imposing the periodic boundary condition on wave function. On increasing the randomness of the varying mass, states lose periodicity and most of them tend to localize. At the band centre or the low-energy limit, there exist extended states which have more than one peak spatially separate with each other comparatively large distance. Numerical calculations of the density of states and ensemble averaged Green's functions are explicitly given. They are in good agreement with analytical calculations by using the supersymmetric methods and exact form of the zero-energy wave functions. (C) 1999 Elsevier Science B.V. All rights reserved., ELSEVIER SCIENCE BV
    NUCLEAR PHYSICS B, Sep. 1999, [Reviewed]

MISC

  • DCアルゴリズムを用いたSCAD正則化項付きICA               
    遠藤優介,竹田晃人
    IEICE Technical Report, Nov. 2022
    Corresponding
  • Robot System Motivating the Pre-Frail Elderly to Walk               
    濱野拓実,吉村怜生,竹田晃人,矢木啓介,森善一
    第23回日本感性工学会大会予稿集, Sep. 2021
  • 軌道データに基づいた空力係数推定への近似ベイズ計算法の応用               
    石塚雅人,坪井一洋,竹田晃人,宮嵜武
    日本機械学会 シンポジウム:スポーツ工学・ヒューマンダイナミクス 2020 講演論文集, Nov. 2020
  • 高齢者に散歩を促す携帯型ロボットの開発               
    栗田芳樹,YeZiqi,吉村怜生,竹田晃人,矢木啓介,森善一
    第22回日本感性工学会大会予稿集, Sep. 2020
  • モンテカルロ法を用いた神経集団推定法の改良と実データへの適用               
    木村俊; 竹田晃人; 太田桂輔
    IEICE Technical Report, Mar. 2020
    Corresponding
  • 行列分解ダイナミクスの適用限界               
    玉井智貴; 竹田晃人
    情報理論とその応用シンポジウム(SITA2019)予稿集, Nov. 2019
    Last
  • 行列分解問題への甘利・馬被ダイナミクスの適用               
    玉井智貴; 竹田晃人
    情報理論とその応用シンポジウム(SITA2018)予稿集, Dec. 2018
  • 行列分解問題の変分ベイズ解のダイナミクス解析               
    玉井智貴; 竹田晃人
    IEICE Technical Report, Nov. 2018
    Last
  • PCD法に基づいた畳み込み制約付きボルツマンマシンの学習法の改良               
    石涼介; 須田玲輝; 竹田晃人
    IEICE Technical Report, Nov. 2017
    Last
  • 2つの疎な行列からなる行列分解問題の変分ベイズ法による解析法の検討               
    玉井智貴; 竹田晃人
    IEICE Technical Report, Nov. 2017
    Last
  • 疎な事前分布での変分ベイズ法を用いた行列補完問題の近似的解法               
    川澄亮太; 竹田晃人
    IEICE Technical Report, Nov. 2016
    Last
  • 統計力学で圧縮センシングを探る               
    竹田晃人
    科研費新学術領域研究「スパースモデリングの深化と高次元データ駆動科学の創生」チュートリアル講演概要集, Dec. 2014, [Invited]
  • 部分並列干渉除去法の疎信号復元問題への応用               
    竹田晃人,田中利幸
    IEICE Technical Report, Nov. 2014
    Lead
  • Restricted Boltzmann Machineを用いた画像分類のための特徴抽出               
    須田玲輝,竹田晃人
    IEICE Technical Report, Nov. 2014
    Last
  • 事後確率最大化推定に基づく圧縮センシングのデータ復元アルゴリズム (SITA2012予稿集)               
    竹田晃人; 樺島祥介
    情報理論とその応用シンポジウム(SITA2012)予稿集, Dec. 2012
    Lead
  • 事後確率最大化推定に基づく圧縮センシングのデータ復元アルゴリズム (IBIS2012予稿集)               
    竹田晃人; 樺島祥介
    IEICE Technical Report, Nov. 2012
    Lead
  • 圧縮センシングにおけるレプリカ対称性の破れ (IBIS2021予稿集)               
    竹田晃人; 樺島祥介
    IEICE Technical Report, Nov. 2011
    Lead
  • 圧縮センシングにおけるレプリカ対称性の破れ (SITA2011予稿集)               
    竹田晃人; 樺島祥介
    情報理論とその応用シンポジウム(SITA2011)予稿集, Nov. 2011
    Lead
  • 統計力学的手法に基づく階層的ランダム符号の性能解析               
    竹田晃人; 小渕智之; 高橋和孝
    IEICE Technical Report, Nov. 2010
  • 統計力学的手法に基づく相関信号下での圧縮センシングの性能評価               
    竹田晃人; 樺島祥介
    情報理論とその応用シンポジウム(SITA2010)予稿集, Nov. 2010, [Reviewed]
  • 相関の有る圧縮行列を用いたcompressed sensing               
    竹田晃人; 樺島祥介
    科研費特定領域研究「情報統計力学の深化と展開」研究成果発表会講演集, Dec. 2009, [Invited]
    Lead
  • ランダム行列の公式を用いた有相関MIMO/CDMA通信系の統計力学的解析               
    幡生敦史; 竹田晃人; 樺島祥介
    情報理論とその応用シンポジウム(SITA2008)予稿集, Oct. 2008
  • 双対性によるスピングラスの解析と量子誤り訂正符号
    竹田晃人
    京都大学数理解析研究所講究録, Feb. 2007
  • 適応TAP平均場法とそのCDMA通信系への応用               
    竹田晃人
    科研費特定領域研究「情報統計力学の深化と展開」研究成果発表会講演集, Dec. 2006, [Invited]
  • 固有値分布によるCDMA通信の特徴付け               
    竹田晃人; 宇田新介; 樺島祥介
    情報論的学習理論ワークショップ(IBIS2006)予稿集, Nov. 2006
  • Estimation of spin-glass ground-state energies by duality
    Koujin Takeda
    素粒子論研究, Apr. 2006
  • 自己双対なランダムプラケットゲージ模型と量子トーラス符号の誤り訂正限界               
    竹田晃人; 西森秀稔
    情報論的学習理論ワークショップ(IBIS2003)予稿集, Oct. 2003
    Lead
  • ランダムスピン鎖と長距離相関ランダムネス
    竹田晃人
    素粒子論研究, Aug. 2003

Books and other publications

  • スパースモデリング               
    Irina Rish; Genady Ya Grabranik著; 竹澤邦夫; 大関真之; 高橋茶子; 竹田晃人; 徳田悟; 藤本晃司; 安田宗樹, Joint translation
    ジャムハウス, 10 Jan. 2020
    9784906768738
  • 情報理論に現れるランダム行列理論               
    竹田晃人, Single work
    日本物理学会誌 (日本物理学会), Aug. 2014, [Reviewed]

Lectures, oral presentations, etc.

  • The Influence of Network Structure and Agent Interaction on the Stationarity of Market Game               
    Yuga HAYASHIDA; Taisei KAWAGUCHI; Koujin TAKEDA
    2025 Spring Meeting, The Physical Society of Japan, 20 Mar. 2025
    20250318, 20250321
  • Neuronal ensemble inference based on generative model approach ​ using different observed activity data               
    Yu TAKEI; Shun KIMURA; Koujin TAKEDA
    2025 Spring Meeting, The Physical Society of Japan, 19 Mar. 2025
    20250318, 20250321
  • 生成的アプローチによるネットワーク上の機能的神経クラスタ推定               
    武井悠; 木村俊; 竹田晃人
    ネットワーク科学研究会2024, 04 Mar. 2025
    20250304, 20250305
  • ガウス過程を用いたネットワークレジリエンスの評価               
    椎名優太; 竹田晃人
    ネットワーク科学研究会2024, 04 Mar. 2025
    20250304, 20250305
  • 市場ゲームにおけるエージェントの定常性とネットワーク構造の影響               
    林田裕雅; 川口泰生; 竹田晃人
    ネットワーク科学研究会2024, 04 Mar. 2025
    20250304, 20250305
  • 神経活動同期性を利用したマルコフ連鎖モンテカルロ法に 基づく神経クラスタ構造の事後分布推定               
    武井悠; 木村俊; 竹田晃人
    電気学会東京支部茨城支所研究発表会, 30 Nov. 2024
    20241130, 20241130
  • マルチエージェント強化学習における協力関係の解析               
    橋本宙; 竹田晃人
    電気学会東京支部茨城支所研究発表会, 30 Nov. 2024
    20241130, 20241130
  • 市場モデル上のネットワークエージェントにおける定常性と次数分布の関係               
    林田裕雅; 川口泰生; 竹田晃人
    電気学会東京支部茨城支所研究発表会, 30 Nov. 2024
    20241130, 20241130
  • Effectiveness of automatic hyperparameter tuning algorithm in sparse matrix factorization               
    Ryota Kawasumi; Koujin Takeda
    DAIKIN International Symposium on Physics of Intelligence, 07 Nov. 2024
    20241106, 20241108
  • 時系列信号同期性に基づいた生成モデルによるクラスタ及び事後分布推定               
    武井悠; 木村俊; 竹田晃人
    情報論的学習理論ワークショップ (IBIS2024), 05 Nov. 2024
    20241104, 20241107
  • 線形関数近似器を用いたTD学習によるマルチエージェント強化学習における学習曲線予測               
    仲野凌平; 木村俊; 竹田晃人
    情報論的学習理論ワークショップ (IBIS2024), 05 Nov. 2024
    20241104, 20241107
  • ベイズ行列分解モデルの平衡解の適用可能条件および分解行列アルゴリズムの収束解との比較               
    川澄亮太; 玉井智貴; 竹田晃人
    日本物理学会年次大会, 17 Sep. 2024
    20240916, 20240919
  • 動的平均場理論を応用したマルチエージェント強化学習の学習曲線予測に関する考察               
    仲野凌平; 木村俊; 竹田晃人
    日本物理学会年次大会, 17 Sep. 2024
    20240916, 20240919
  • 拡散モデルにおける微分方程式のサンプリング手法の改良               
    猪股隼斗,竹田晃人
    日本物理学会年次大会, 17 Sep. 2024
    20240916, 20240919
  • Janus Gameにおけるネットワークエージェントの定常性に市場閾値および次数分布が与える影響               
    林田裕雅,川口泰生,竹田晃人
    日本物理学会年次大会, 17 Sep. 2024
    20240916, 20240919
  • 神経活動同期性に基づくクラスタ構造及びクラスタ間ネットワークの推定               
    武井悠,木村俊,竹田晃人
    日本物理学会年次大会, 17 Sep. 2024
    20240916, 20240919
  • スパースモデリングの基礎と画像処理・データ分析への応用               
    竹田晃人
    日本テクノセンターオンラインセミナー, 31 May 2024, 日本テクノセンター, [Invited]
    20240531, 20240531
  • L1正則化付きICAの理論的性能評価               
    遠藤優介,竹田晃人
    日本物理学会春季大会, 18 Mar. 2024
    20240318, 20240321
  • 時間差分を考慮した活動同期性に基づく機能的神経クラスタ推定               
    木村俊,竹田晃人
    日本物理学会春季大会, 18 Mar. 2024
    20240318, 20240321
  • 新たな疎制約付きICAの提案と収束性の評価               
    遠藤優介,竹田晃人
    電子情報通信学会総合大会, 06 Mar. 2024
    20240304, 20240308
  • 少量ラベル画像データ分類における拡散モデルによるデータ拡張               
    猪股隼斗,竹田晃人
    電気学会東京支部茨城支所研究発表会, 02 Dec. 2023
    20231202, 20231202
  • 特徴量抽出による雑談対話の破綻検出               
    関田千博,竹田晃人
    電気学会東京支部茨城支所研究発表会, 02 Dec. 2023
    20231202, 20231202
  • マルチエージェント強化学習における探索の効率化               
    仲野凌平,竹田晃人
    電気学会東京支部茨城支所研究発表会, 02 Dec. 2023
    20231202, 20231202
  • Application of sparse ICA to fMRI data ​and performance analysis based on statistical mechanical method               
    Yusuke Endo; Koujin Takeda
    International Conference on Machine Learning Physics, 13 Nov. 2023
    20231113, 20231118
  • スパース制約を課した新たな ICA とタスク付き fMRI データ解析への応用               
    遠藤優介,竹田晃人
    日本生物物理学会年会, 16 Nov. 2023
    20231114, 20231116
  • 線虫の全脳活動データに対する機能的神経クラスタ推定               
    竹下晴山,木村俊,竹田晃人,岩崎唯史
    日本生物物理学会年会, 16 Nov. 2023
    20231114, 20231116
  • 疎行列分解におけるパラメータ自動調整法の提案と有効性の検証               
    川澄亮太,竹田晃人
    情報論的学習理論ワークショップ(IBIS2023), 31 Oct. 2023
    20231029, 20231101
  • 神経活動データに対するスパース独立成分分析の適用と統計力学的手法に基づく性能解析               
    遠藤優介,竹田晃人
    情報論的学習理論ワークショップ(IBIS2023), 31 Oct. 2023
    20231029, 20231101
  • 確率的ブロックモデルに基づく時系列信号クラスタ推定               
    木村俊,竹下晴山,岩崎唯史,竹田晃人
    情報論的学習理論ワークショップ(IBIS2023), 30 Oct. 2023
    20231029, 20231101
  • 活動同期性に基づく確率的ブロックモデルによる神経クラスタ推定               
    木村俊; 竹下晴山; 岩崎唯史; 竹田晃人
    日本物理学会年次大会, 17 Sep. 2023
    20230916, 20230919
  • ベイズ行列分解モデルの平衡解の性質と解析手法の関係               
    川澄亮太,玉井智貴,竹田晃人
    日本物理学会年次大会, 17 Sep. 2023
    20230916, 20230919
  • DCアルゴリズムを応用した正則化付きICAによるfMRIデータの解析               
    遠藤優介; 竹田晃人
    日本物理学会年次大会, 17 Sep. 2023
    20230916, 20230919
  • 新たな正則化付きICAとfMRIデータ解析への応用               
    遠藤優介,竹田晃人
    日本神経回路学会全国大会, 05 Sep. 2023
    20230904, 20230906
  • Time series data clustering by MCMC with Dirichlet process               
    Shun Kimura; Koujin Takeda
    STATPHYS28, 08 Aug. 2023
    20230807, 20230811
  • Analysis of matrix factorization by signal-noise separation in neural networks               
    Tomoki Tamai; Ryota Kawasumi; Koujin Takeda
    STATPHYS28, 07 Aug. 2023
    20230807, 20230811
  • 拡散を用いた機能的神経クラスタ推定法の普遍的性質               
    木村俊; 竹田晃人
    日本物理学会春季大会, 25 Mar. 2023
    20230322, 20230325
  • 行列分解を用いた神経クラスタ推定               
    木村俊; 川澄亮太; 竹田晃人
    日本物理学会春季大会, 22 Mar. 2023
    20230322, 20230325
  • 計画研究A02班「脳ネットワークにおける高速・高精度な機能的クラスタ/ハブ細胞の検出法の開発」成果報告               
    竹田晃人,斎藤陽平,木村俊
    科学研究費補助金 学術変革領域研究B「クラスタ/ハブダイナミズムの決定剛軟因子」2023シンポジウム, 17 Mar. 2023
    20230317, 20230318
  • 特徴量抽出によるネットワークトラフィックの異常検知精度の改善法               
    畑中亮介,竹田晃人
    電子情報通信学会総合大会, 09 Mar. 2023
    20230307, 20230310
  • 全変動罰則項付き二段階反復縮小閾値法を用いたホログラフィにおける画像再構成               
    住田光駿,竹田晃人
    電気学会東京支部茨城支所研究発表会, 17 Dec. 2022
    20221217, 20221217
  • Generative Adversarial Networkを用いた超解像におけるGeneratorの比較               
    奥村勇介ワグナー,竹田晃人
    電気学会東京支部茨城支所研究発表会, 17 Dec. 2022
    20221217, 20221217
  • 脳ネットワークにおける高速・高精度な機能的クラスタ/ハブ細胞の検出法の開発               
    竹田晃人
    「次世代脳」プロジェクト 冬のシンポジウム2022, 15 Dec. 2022, [Invited]
    20221214, 20221217
  • 機械学習を用いた無染色位相差顕微鏡画像からの細胞核抽出と評価               
    大橋未来,竹田晃人,長山和亮
    日本生体医工学会関東支部若手研究者発表会2022, 10 Dec. 2022
    20221210, 20221210
  • DCアルゴリズムを用いたSCAD正則化項付きICA               
    遠藤優介,竹田晃人
    ニューロコンピューティング(NC)研究会, 03 Dec. 2022
    20221203, 20221203
  • 時系列信号クラスタ推定を目的としたベイズ生成モデルの表現能力拡張               
    木村俊,竹田晃人
    情報論的学習理論ワークショップ(IBIS2022), 21 Nov. 2022
    20221120, 20221123
  • 神経細胞イメージングデータの事後分布およびスパイク推定               
    斎藤陽平,竹田晃人
    情報論的学習理論ワークショップ(IBIS2022), 21 Nov. 2022
    20221120, 20221123
  • 信号雑音分離による行列分解アルゴリズムの解析手法の発展と評価               
    玉井智貴,川澄亮太,竹田晃人
    情報論的学習理論ワークショップ(IBIS2022), 21 Nov. 2022
    20221120, 20221123
  • DC計画問題の応用によるスパースICAの提案               
    遠藤優介,竹田晃人
    情報論的学習理論ワークショップ(IBIS2022), 21 Nov. 2022
    20221120, 20221123
  • 機能的神経クラスタ推定のためのベイズ生成モデルの一般化               
    木村俊,竹田晃人
    日本生物物理学会年会, 30 Sep. 2022
    20220928, 20220930
  • fMRIデータに対する行列分解による脳情報コーディング               
    遠藤優介,竹田晃人
    日本生物物理学会年会, 30 Sep. 2022
    20220928, 20220930
  • ベイズ推定を用いた神経細胞イメージングデータのパラメータおよびスパイク推定               
    斎藤陽平,竹田晃人
    日本物理学会秋季大会, 14 Sep. 2022
    20220912, 20220915
  • 機能的神経クラスタ推定のための生成モデルの表現能力               
    木村俊,竹田晃人
    日本物理学会秋季大会, 14 Sep. 2022
    20220912, 20220915
  • 拡張された機能的神経クラスタ推定法の実データへの適用               
    木村俊,竹田晃人,太田桂輔,村山正宜
    日本物理学会秋季大会, 14 Sep. 2022
    20220912, 20220915
  • DC 計画問題を用いたスパース制約付き独立成分分析               
    遠藤優介,竹田晃人
    日本物理学会秋季大会, 12 Sep. 2022
    20220912, 20220915
  • スパースオートエンコーダの線形分離性能の評価               
    大橋弘一郎,竹田晃人
    日本物理学会秋季大会, 12 Sep. 2022
    20220912, 20220915
  • 拡張されたminority gameに現れる定常非定常転移               
    川口泰生,竹田晃人
    日本物理学会秋季大会, 12 Sep. 2022
    20220912, 20220915
  • 圧縮センシングに基づくデジタルホログラフィ               
    住田光駿,竹田晃人
    日本物理学会秋季大会, 12 Sep. 2022
    20220912, 20220915
  • Generalization of neuronal ensemble inference method to higher dimensions               
    木村俊,竹田晃人
    NEURO2022, 02 Jul. 2022
    20220630, 20220703
  • Parameter estimation of neuroimaging data,through Bayesian estimation               
    斎藤陽平,竹田晃人
    NEURO2022, 02 Jul. 2022
    20220630, 20220703
  • Encoding in fMRI data through matrix factorization               
    遠藤優介,竹田晃人
    NEURO2022, 30 Jun. 2022
    20220630, 20220703
  • 学術変革領域(B)クラスタ/ハブダイナミズムの決定剛軟因子               
    大本育実,中村匠,木村俊,高田篤,竹田晃人,村山正宜
    日本科学振興協会 第1回総会・キックオフミーティング, 19 Jun. 2022
    20220618, 20220624
  • 計画研究A02班「脳ネットワークにおける高速・高精度な機能的クラスタ/ハブ細胞の検出法の開発」成果報告               
    竹田晃人,斎藤陽平
    科研費「クラスタ/ハブダイナミズムの決定剛軟因子」シンポジウム, 25 Mar. 2022
    20220325, 20220326
  • 細胞位相差画像の時間差分における特徴量抽出と細胞分裂タイミングの予測               
    段木穂高,竹田晃人,長山和亮
    日本物理学会年次大会, 18 Mar. 2022
    20220314, 20220318
  • fMRI データに対する行列分解の性能評価               
    遠藤優介,竹田晃人
    日本物理学会年次大会, 17 Mar. 2022
    20220314, 20220318
  • 季語情報付与による俳句自動生成器の改良と評価               
    加藤智一,竹田晃人
    言語処理学会年次大会, 16 Mar. 2022
    20220314, 20220318
  • マルコフ連鎖モンテカルロ法に基づく神経集団推定法のサイズ依存性               
    木村俊,竹田晃人
    日本物理学会年次大会, 16 Mar. 2022
    20220314, 20220318
  • 位相差顕微鏡画像の特徴量抽出によるHeLa細胞の分裂周期の予測               
    段木穂高,竹田晃人,長山和亮
    日本機械学会関東支部総会・講演会, 15 Mar. 2022
    20220314, 20220315
  • PCAと自己組織化マップを組み合わせたネットワークトラフィックの異常検知               
    畑中亮介,竹田晃人
    電気学会東京支部茨城支所研究発表会, 11 Dec. 2021
    20211211, 20211211
  • 改良された敵対的生成ネットワークの学習法の改善               
    柿沼ひいろ,竹田晃人
    電気学会東京支部茨城支所研究発表会, 11 Dec. 2021
    20211211, 20211211
  • 深層学習モデルが無線通信チャネル推定へ与える影響               
    ��川峰人,竹田晃人
    電気学会東京支部茨城支所研究発表会, 11 Dec. 2021
    20211211, 20211211
  • 特異点を利用した変分ベイズ疎行列分解アルゴリズムの事前分布パラメータ自動調整               
    川澄亮太; 竹田晃人
    情報論的学習理論ワークショップ (IBIS2021), 12 Nov. 2021
    20211110, 20211113
  • 神経細胞イメージングデータのパラメータ事後分布推定               
    斎藤陽平; 竹田晃人
    情報論的学習理論ワークショップ (IBIS2021), 12 Nov. 2021
    20211110, 20211113
  • 時間的非定常性を仮定した神経集団推定モデル               
    木村俊; 竹田晃人
    情報論的学習理論ワークショップ (IBIS2021), 10 Nov. 2021
    20211110, 20211113
  • ベイズ推定による神経細胞イメージングデータのパラメータ推定               
    斎藤陽平,竹田晃人
    日本物理学会秋季大会, Sep. 2021
    20210920, 20210923
  • 非定常性を仮定した神経集団の動的挙動推定               
    木村俊,竹田晃人
    日本物理学会秋季大会, Sep. 2021
    20210920, 20210923
  • 大規模活動データに適用可能な神経集団推定法のコミュニティ検出特性               
    木村俊,竹田晃人
    日本物理学会秋季大会, Sep. 2021
    20210920, 20210923
  • 市場における資源割り当てゲームに現れる周期性の研究               
    川口泰生,竹田晃人
    日本物理学会秋季大会, Sep. 2021
    20210920, 20210923
  • 部分空間法を用いた癌細胞分裂開始からの経過時間予測               
    段木穂高,竹田晃人,長山和亮
    日本物理学会秋季大会, Sep. 2021
    20210920, 20210923
  • 量子細線における不純物効果の深層学習による推定               
    児玉陽一; 長谷川伸; 野木沼真海; 竹田晃人; 青野友祐
    日本応用物理学会 秋季学術講演会, Sep. 2021
    20210910, 20210923
  • 圧縮センシングの基礎と応用・最新技術               
    竹田晃人
    日本テクノセンター講習会, 03 Sep. 2021, [Invited]
    20210903, 20210903
  • Fast inference of neuronal ensembles applicable to large scale Ca2+ imaging data               
    Shun Kimura; Keisuke Ota; Masanori Murayama; Koujin Takeda
    The 44th Annual Meeting of the Japan Neuroscience Society, Jul. 2021
    20210728, 20210731
  • Fast and wide field-of-view two-photon imaging revealed functional network proprieties with the single-cell resolution               
    Keisuke Ota; Yasuhiro Oisi; Muneki Ikeda; Yoshiki Ito; Hiroyuki Uwamori; Shun Kimura; Kenta Kobayashi; Yoshinori Kuroiwa; Masaru Horikoshi; Junya Matsushita; Hiroyuki Hioki; Masamichi Ohkura; Junichi Nakai; Koujin Takeda; Masafumi Oizumi; Atsushi Miyawaki; Toru Aonishi; Takahiro Ode; Haruhiko Bito; Masanori Murayama
    The 44th Annual Meeting of the Japan Neuroscience Society, Jul. 2021
    20210728, 20210731
  • 疎行列分解アルゴリズムの事前分布パラメータ自動調整               
    川澄亮太,竹田晃人
    日本物理学会年次大会, Mar. 2021
    202103
  • 大規模神経活動データのためのネットワーク構造推定法               
    木村俊,竹田晃人
    日本物理学会年次大会, Mar. 2021
    202103
  • 活動同期性に基づく神経クラスタ推定手法の大規模イメージングデータへの適用               
    太田桂輔,木村俊,竹田晃人,村山正宜
    日本物理学会年次大会, Mar. 2021
    202103
  • 計画研究A02班「脳ネットワークにおける高速・高精度な機能的クラスタ/ハブ細胞の検出法の開発」研究計画紹介               
    竹田晃人
    科研費「クラスタ/ハブダイナミズムの決定剛軟因子」キックオフシンポジウム, Jan. 2021
    202101
  • 神経集団推定法の連続値信号への一般化               
    木村俊,竹田晃人,岩崎唯史,太田桂輔
    情報論的学習理論ワークショップ (IBIS2020), Nov. 2020
    202011
  • 圧縮センシングの基礎と応用・最新技術               
    竹田晃人
    日本テクノセンター講習会, Nov. 2020, [Invited]
    202011
  • 一般化されたベイズ的Minority Gameの解析               
    大澤佑樹,竹田晃人
    日本物理学会秋季大会, Sep. 2020
    202009
  • 近似的メッセージ伝搬法を用いた半教師あり学習による画像分類               
    藤岡義治,竹田晃人
    日本物理学会秋季大会, Sep. 2020
    202009
  • 生成モデルを用いた神経集団推定法の一般化               
    木村俊,竹田晃人,岩崎唯史
    日本物理学会秋季大会, Sep. 2020
    202009
  • 細胞核形状を用いた癌細胞分裂開始からの経過時間予測               
    段木穂高,竹田晃人,長山和亮
    日本物理学会秋季大会, Sep. 2020
    202009
  • Statistical inference of neuronal ensembles based on synchronous activity among neurons               
    木村俊,竹田晃人,岩崎唯史
    Annual Meeting of the Biophysical Society of Japan, Sep. 2020
    202009
  • 圧縮センシングの基礎と応用・最新技術               
    竹田晃人
    日本テクノセンター講習会, Mar. 2020, [Invited]
    202003
  • モンテカルロ法を用いた神経集団推定法の改良と実データへの適用               
    木村俊; 竹田晃人; 太田桂輔
    ニューロコンピューティング(NC)研究会, Mar. 2020
    202003
  • 行列分解アルゴリズムが局所解に収束する場合のダイナミクス解析               
    玉井智貴; 竹田晃人
    日本物理学会年次大会, Mar. 2020
    202003
  • モンテカルロ法を用いた神経集団推定法の改良               
    木村俊; 竹田晃人; 太田桂輔
    日本物理学会年次大会, Mar. 2020
    202003
  • 生成モデルを用いた神経集団推定法の改良と実データへの適用               
    太田桂輔; 木村俊; 竹田晃人
    日本物理学会年次大会, Mar. 2020
    202003
  • Improved algorithm for neuronal ensemble inference by Monte Carlo method               
    Shun Kimura; Koujin Takeda
    NetSci-X2020, Jan. 2020
    202001
  • 行列分解ダイナミクスの適用限界               
    玉井智貴; 竹田晃人
    情報理論とその応用シンポジウム(SITA2019), Nov. 2019
    201911
  • DeepClusterによる半教師あり学習のクラスタリング性能による精度評価               
    藤岡義治; 竹田晃人
    情報論的学習理論ワークショップ (IBIS2019), Nov. 2019
    201911
  • 生成モデルを用いた神経集団のベイズ推定法の改良               
    木村俊; 竹田晃人
    情報論的学習理論ワークショップ (IBIS2019), Nov. 2019
    201911
  • 行列分解問題への信号雑音分離法の適用評価               
    玉井智貴; 竹田晃人
    情報論的学習理論ワークショップ (IBIS2019), Nov. 2019
    201911
  • 事後共分散項を考慮した行列分解アルゴリズムの解析               
    玉井智貴; 竹田晃人
    日本物理学会秋季大会, Sep. 2019
    201909
  • DNNを用いた画像分類におけるloss landscapeの考察               
    今川和樹; 竹田晃人
    日本物理学会秋季大会, Sep. 2019
    201909
  • 確率伝搬法を用いた複数文書要約               
    喜多野広貴; 竹田晃人
    日本物理学会秋季大会, Sep. 2019
    201909
  • 確率伝搬法を用いたベイズ的Minority Gameの解析               
    大澤佑樹; 竹田晃人
    日本物理学会秋季大会, Sep. 2019
    201909
  • DeepClusterに基づく半教師あり学習の考察               
    藤岡義治; 竹田晃人
    日本物理学会秋季大会, Sep. 2019
    201909
  • 行列分解問題の簡約ダイナミクスの修正および停留点解析               
    玉井智貴; 竹田晃人
    日本物理学会年次大会, Mar. 2019
    201903
  • 圧縮センシングの基礎と応用・最新技術               
    竹田晃人
    日本テクノセンター講習会, Mar. 2019, [Invited]
    201903
  • 行列分解問題への甘利・馬被ダイナミクスの適用               
    玉井智貴; 竹田晃人
    情報理論とその応用シンポジウム(SITA2018), Dec. 2018
    201812
  • 画像分類における適応的なSGDの挙動の解析               
    今川和樹; 竹田晃人
    情報論的学習理論ワークショップ(IBIS2018), Nov. 2018
    201811
  • 重み付き最大被覆問題への確率伝搬法の適用               
    喜多野広貴; 竹田晃人
    情報論的学習理論ワークショップ(IBIS2018), Nov. 2018
    201811
  • 行列分解問題の変分ベイズ解のダイナミクス解析               
    玉井智貴; 竹田晃人
    情報論的学習理論ワークショップ(IBIS2018), Nov. 2018
    201811
  • Variational Bayes method for matrix factorization to two sparse factorized matrices               
    Tomiki Tamai; Koujin Takeda
    International Symposium on Information Theory and its Applications (ISITA), Oct. 2018
    201810
  • 行列分解問題の変分ベイズ解の求解ダイナミクスの簡約化               
    玉井智貴; 竹田晃人
    日本物理学会秋季大会, Sep. 2018
    201809
  • 情報科学とスパース性               
    竹田晃人
    宇都宮大学工学部 最先端技術特別講演会, Sep. 2018, [Invited]
    201809
  • 圧縮センシングの基礎と応用・最新技術               
    竹田晃人
    日本テクノセンター講習会, Jun. 2018, [Invited]
    201806
  • 疎性を持つ行列分解問題の変分ベイズ法に基づく数値解法のダイナミクスの考察               
    川澄亮太; 竹田晃人
    日本物理学会年次大会, Mar. 2018
    201803
  • 2つの疎な事前分布の下での行列分解問題の変分ベイズ解とその性質               
    玉井智貴; 竹田晃人
    日本物理学会年次大会, Mar. 2018
    201803
  • 2つの疎な行列からなる行列分解問題の変分ベイズ法による解析法の検討               
    玉井智貴; 竹田晃人
    情報論的学習理論ワークショップ(IBIS2017), Nov. 2017
    201711
  • PCD法に基づいた畳み込み制約付きボルツマンマシンの学習法の改良               
    石涼介; 須田玲輝; 竹田晃人
    情報論的学習理論ワークショップ(IBIS2017), Nov. 2017
    201711
  • Variational Bayes method for matrix factorization to two sparse factorized matrices               
    Tomoki Tamai; Koujin Takeda
    International Meeting on “High-Dimensional Data Driven Science”,(HD3-2017), Sep. 2017
    201709
  • Approximate analysis of matrix factorization/completion problem by variational Approximate analysis with sparse prior               
    Ryota Kawasumi; Koujin Takeda
    International Meeting on “High-Dimensional Data Driven Science”,(HD3-2017), Sep. 2017
    201709
  • 変分ベイズ法を用いた疎な事前布含む行列分解問題のパラメータ最適化               
    川澄亮太; 玉井智貴; 竹田晃人
    日本物理学会秋季大会, Sep. 2017
    201709
  • An Alternative to Basic Log-likelihood for Bayesian Network Clustering               
    Rei Oshino; Koujin Takeda
    Nonlinear Theory and Its Applications (NOLTA2016), Nov. 2016
    201611
  • Efficient Board Feature Extraction for Strategy Improvement in Computer Go               
    Hayato Mitsuoka; Koujin Takeda
    Nonlinear Theory and Its Applications (NOLTA2016), Nov. 2016
    201611
  • 疎な事前分布での変分ベイズ法を用いた行列補完問題の近似的解法               
    川澄亮太; 竹田晃人
    情報論的学習理論ワークショップ(IBIS2016), Nov. 2016
    201611
  • 拡張SIR模型におけるネットワーク形状と相転移との関係               
    小林正伸; 竹田晃人
    日本物理学会年次大会, Mar. 2016
    201603
  • Application of partial parallel interference cancellation to sparse signal ,Recovery               
    Koujin Takeda; Toshiyuki Tanak
    Physics Informed Machine Learning,(Conference), Jan. 2016
    201601
  • Application of partial parallel interference cancellation to sparse signal Recovery               
    Koujin Takeda; Toshiyuki Tanak
    Physics Informed Machine Learning (Conference), Jan. 2016
  • Application of partial parallel interference cancellation to sparse signal recovery               
    Koujin Takeda; Toshiyuki Tanaka
    International Meeting on “High-Dimensional Data Driven Science”,(HD3-2015), Dec. 2015
    201512
  • 多状態拡張したSIRモデルにおける感染爆発のシミュレーション               
    小林正伸; 竹田晃人
    日本物理学会秋季大会, Sep. 2015
    201509
  • 統計力学で圧縮センシングを探る               
    竹田晃人
    科研費新学術領域研究「スパースモデリングの深化と高次元データ駆動科学の創生」チュートリアル講演会, Dec. 2014, [Invited]
    201412
  • 部分並列干渉除去法の疎信号復元問題への応用               
    竹田晃人; 田中利幸
    情報論的学習理論ワークショップ (IBIS2014), Nov. 2014
    201411
  • Restricted Boltzmann Machineを用いた画像分類のための特徴抽出               
    須田玲輝; 竹田晃人
    情報論的学習理論ワークショップ (IBIS2014), Nov. 2014
    201411
  • 部分並列干渉除去法を応用した圧縮センシングの疎信号復元アルゴリズム               
    竹田晃人; 田中利幸
    日本物理学会秋季大会, Sep. 2014
    201409
  • Reconstruction algorithm in compressed sensing based on maximum a posteriori estimation               
    Koujin Takeda; Yoshiyuki Kabashima
    ELC International Meeting on Inference, Computation, and Spin Glasses (ICSG2013), Jul. 2013, [Invited]
    201307
  • A brief review on theory for phase boundary of random spin models               
    Koujin Takeda
    Quantum Information via Statistical Mechanics -Counting Steps toward Realization- (Conference), Jan. 2013, [Invited]
    201301
  • 事後確率最大化推定に基づく圧縮センシングのデータ復元アルゴリズム               
    竹田晃人; 樺島祥介
    情報理論とその応用シンポジウム(SITA2012), Nov. 2012
    201211
  • 事後確率最大化推定に基づく圧縮センシングのデータ復元アルゴリズム               
    竹田晃人; 樺島祥介
    情報理論とその応用シンポジウム(SITA2012), Nov. 2012
    201211
  • MAPアルゴリズムを用いたL1ノルム復元に関する考察               
    竹田晃人
    研究会「圧縮センシングとその周辺(3)」, Oct. 2012, [Invited]
    201210
  • 平均場近似に基づく圧縮センシングの復元アルゴリズム               
    竹田晃人; 樺島祥介; 李斗煥; 山田貴之
    日本物理学会秋季大会, Sep. 2012
    201209
  • 圧縮センシングのL1ノルム復元問題に関する理論               
    竹田晃人
    第11回情報科学技術フォーラム, Sep. 2012, [Invited]
    201209
  • A study of the universal threshold in the L1 recovery by statistical mechanics               
    Koujin Takeda; Yoshiyuki Kabashima
    46th Conference of Information Sciences and Systems(CISS2012), Mar. 2012, [Invited]
    201203
  • 圧縮センシングと統計力学               
    竹田晃人
    数理物理・物性基礎論セミナー, Jan. 2012, [Invited]
    201201
  • 圧縮センシングにおけるレプリカ対称性の破れ               
    竹田晃人; 樺島祥介
    情報理論とその応用シンポジウム(SITA2011), Nov. 2011
    201111
  • 相関付CDMA/MIMO通信系の統計物理学的解析法と圧縮センシングへの応用               
    竹田晃人
    電子情報通信学会 情報理論研究会・LDPC符号ワークショップ, Sep. 2011, [Invited]
    201109
  • 転送演算子を用いたランダムスピン鎖のダイナミクス解析               
    A.C.C.Coolen; 竹田晃人
    日本物理学会秋季大会, Sep. 2011
    201109
  • 圧縮センシングにおけるレプリカ対称性の破れ               
    竹田晃人; 樺島祥介
    日本物理学会秋季大会, Sep. 2011
    201109
  • 相関信号下での圧縮センシングの性能解析               
    竹田晃人; 樺島祥介
    情報論的学習理論ワークショップ(IBIS2010), Nov. 2010
    201011
  • Performance analysis of compressed sensing by replica method               
    Koujin Takeda
    Frontiers in Spin Glass Theory (FSGT2010), Nov. 2010, [Invited]
    201011
  • 統計力学的手法に基づく相関信号下での圧縮センシングの性能評価               
    竹田晃人; 樺島祥介
    情報理論とその応用シンポジウム(SITA2010), Nov. 2010
    201011
  • 疎性有り自己相関回帰モデルにおけるcompressed sensing               
    竹田晃人; 樺島祥介
    日本物理学会秋季大会, Sep. 2010
    201009
  • Telecommunication, compressed sensing and correlated randomness               
    Koujin Takeda; Atsushi Hatabu; Yoshiyuki Kabashima
    International Conference on Statistical Physics (StatPhys24), Jul. 2010
    201007
  • Compressed Sensing with Correlated Randomness               
    Koujin Takeda; Yoshiyuki Kabashima
    StatPhysHK (satellite conference of StatPhys24), Jul. 2010
    201007
  • Statistical Mechanical Analysis of Compressed Sensing Utilizing Correlated Compression Matrix               
    Koujin Takeda; Yoshiyuki Kabashima
    International Symposium on Information Theory (ISIT2010), Jun. 2010
    201006
  • 相関の有る圧縮行列を用いたcompressed sensing               
    竹田晃人; 樺島祥介
    日本物理学会年次大会, Mar. 2010
    201003
  • Statistical mechanical analysis of compressed sensing with correlation               
    Koujin Takeda
    International Meeting on Inference, Computation, and Spin Glasses (ICSG2010), Mar. 2010, [Invited]
    201003
  • 相関の有る圧縮行列を用いたcompressed sensing               
    竹田晃人; 樺島祥介
    科研費特定領域研究「情報統計力学の深化と展開」研究成果発表会, Dec. 2009, [Invited]
    200912
  • Kronecker通信路に対する行列積分公式の適用に関する考察               
    幡生敦史; 竹田晃人; 樺島祥介
    日本物理学会秋季大会, Sep. 2009
    200909
  • Cavity法の疎なランダム行列の固有値解析への応用               
    竹田晃人
    科研費特定領域研究「情報統計力学の深化と展開」研究会「疎結合系の統計物理」, Feb. 2009, [Invited]
    200902
  • Original conjecture on multicritical point of random spin models               
    Koujin Takeda
    Multicritical Behaviour of Spin Glasses and Quantum Error Correcting Codes (MBQEC2008), Nov. 2008, [Invited]
    200811
  • ランダム行列の公式を用いた有相関MIMO/CDMA通信系の統計力学的解析               
    幡生敦史; 竹田晃人; 樺島祥介
    情報理論とその応用シンポジウム(SITA2008), Oct. 2008
    200810
  • Cavity法を用いた疎なランダム行列の固有値分布解析               
    Tim Rogers; Isaac Perez Castillo; Reimer Kuhn; 竹田晃人
    日本物理学会秋季大会, Sep. 2008
    200809
  • Statistical Mechanical Analysis of Random Vector Channel               
    Koujin Takeda; Shinsuke Uda; Atsushi Hatabu; Yoshiyuki Kabashima
    International Conference on Statistical Physics (StatPhys23), Jul. 2007
    200707
  • 適応TAP平均場法とそのCDMA通信系への応用               
    竹田晃人
    科研費特定領域研究「情報統計力学の深化と展開」研究成果発表会, Dec. 2006, [Invited]
    200612
  • 固有値分布によるCDMA通信の特徴付け               
    竹田晃人; 宇田新介; 樺島祥介
    情報論的学習理論ワークショップ(IBIS2006), Nov. 2006
    200611
  • 適応TAP平均場アルゴリズムの改良とそのCDMA通信ヘの応用               
    竹田晃人; 宇田新介; 樺島祥介
    日本物理学会秋季大会, Sep. 2006
    200609
  • 双対性によるスピングラスの解析と量子誤り訂正符号               
    竹田晃人
    京都大学数理解析研究所研究集会「情報物理学の数学的構造」, Jun. 2006
    200606
  • 直交拡散系列を用いたCDMA通信の性能解析               
    竹田晃人; 宇田新介; 樺島祥介
    日本物理学会年次大会, Mar. 2006
    200603
  • Estimation of spin-glass ground-state energies by duality               
    Koujin Takeda
    場の量子論の基礎的諸問題と応用, Dec. 2005
    200512
  • 双対性によるスピングラスの基底エネルギーの評価               
    竹田晃人; 西森秀稔
    日本物理学会秋季大会, Sep. 2005
    200509
  • Conjecture for multicritical points in mutually-dual spin glasses               
    Koujin Takeda; Tomohiro Sasamoto; Hidetoshi Nishimori
    Statistical Physics of Disordered Systems and Its applications (SPDSA2005), Sep. 2005, [Invited]
    200509
  • Finite-dimensional spin glass and quantum error correcting code               
    Koujin Takeda; Tomohiro Sasamoto; Hidetoshi Nishimori
    First International Symposium on Nanometer-scale Quantum Physics (nanoPHYS'05), Jan. 2005
    200501
  • 一般のランダムスピン系の双対性と多重臨界点に関する考察               
    竹田晃人; 西森秀稔; 笹本智弘
    日本物理学会秋季大会, Sep. 2004
    200409
  • Duality of the random model and the multicritical point               
    Koujin Takeda; Hidetoshi Nishimori
    International Conference on Statistical Physics (StatPhys22), Jul. 2004
    200407
  • Duality of the random model and the quantum toric code               
    Koujin Takeda; Hidetoshi Nishimori
    Statistical Physics of Disordered Systems and Its applications (SPDSA2004), Jul. 2004
    200407
  • Duality of the random model and the quantum toric code               
    Koujin Takeda. Hidetoshi Nishimori
    Statistical Physics of Quantum Systems (SPQS2004), Jul. 2004
    200407
  • 自己双対なランダムプラケットゲージ模型と量子トーラス符号の誤り訂正限界               
    竹田晃人; 西森秀稔
    日本物理学会年次大会, Mar. 2004
    200403
  • 自己双対なランダムプラケットゲージ模型と量子トーラス符号の誤り訂正限界               
    竹田晃人
    場の量子論の基礎的諸問題と応用, Dec. 2003
    200312
  • 自己双対なランダムプラケットゲージ模型と量子トーラス符号の誤り訂正限界               
    竹田晃人; 西森秀稔
    情報論的学習理論ワークショップ(IBIS2003), Oct. 2003
    200310
  • Self-dual Random-plaquette Gauge Theory and Accuracy Threshold of the Toric Code               
    Koujin Takeda; Hidetoshi Nishimori
    ERATO conference on Quantum Information Science (EQIS2003), Sep. 2003
    200309
  • 1次元ランダムXXスピン鎖における相関ランダムネスの影響               
    竹田晃人; 一瀬郁夫
    日本物理学会年次大会, Mar. 2003
    200303
  • ランダムスピン鎖と長距離相関ランダムネス               
    竹田晃人
    場の量子論の基礎的諸問題と応用, Dec. 2002
    200212
  • ランダムネスのpower-law型相関と局在・非局在転移               
    竹田晃人; 一瀬郁夫
    日本物理学会年次大会, Mar. 2002
    200203
  • ランダムネスの長距離相関とアンダーソン局在               
    竹田晃人
    場の量子論の基礎的諸問題と応用, Dec. 2001
    200112
  • 1次元ランダムマスフェルミオンモデルにおけるアンダーソン転移               
    竹田晃人
    場の量子論2001, Jul. 2001
    200107
  • ランダムネスが長距離相関をもつ場合の1次元ランダムマスフェルミオンモデルの解析               
    竹田晃人; 一瀬郁夫
    日本物理学会年次大会, Mar. 2001
    200103
  • 1次元ランダムマスフェルミオンモデルでの局在長の計算               
    竹田晃人; 一瀬郁夫
    日本物理学会年次大会, Mar. 2000
    200003
  • 1次元ランダムマスフェルミオンモデルにおける局在・非局在状態               
    竹田晃人; 鶴丸豊広; 一瀬郁夫; 木村昌臣
    日本物理学会秋季大会, Sep. 1999
    199909

Affiliated academic society

  • 1999 - Present, The Physical Society of Japan

Research Themes

Industrial Property Rights

  • 特許第5761811号, 信号処理システム及び信号処理方法
    李斗煥, 山田貴之, 上原一浩, 赤羽和徳, 竹田晃人, 樺島祥介
  • 特許第5761812号, 信号処理システム及び信号処理方法
    李斗煥, 山田貴之, 上原一浩, 赤羽和徳, 樺島祥介, 竹田晃人

Academic Contribution Activities

  • Associate Editor, Journal of the Physical Society of Japan               
    Planning etc
    Apr. 2022 - Present
  • Associate Editor, The Institute of Electronics, Information and Communication Engineers (IEICE) Transactions on Fundamentals of Electronics, Communications and Computer Sciences               
    Planning etc
    Dec. 2021 - Present
  • Steering committee member of Division 11, The Physical Society of Japan               
    Planning etc
    Oct. 2012 - Sep. 2013