Wataru FUJIYAAssociate Professor

■Researcher basic information

Organization

  • College of Science Department of Sciences Earth Sciences
  • Graduate School of Science and Engineering(Master's Program) Major in Science
  • Graduate School of Science and Engineerin(Doctoral Program) Major in Complex Systems Science
  • Faculty of Basic Natural Science Domain of Earth Sciences

Research Areas

  • Natural sciences, Space and planetary science, Geochemistry/Cosmochemistry

Research Keyword

  • Mass spectrometry
  • Isotopes
  • Solar system
  • Meteorites

Degree

  • 2012年03月 博士(理学)(東京大学)
  • 2009年03月 修士(理学)(東京大学)

Educational Background

  • Mar. 2012, The University of Tokyo, Graduate School, Division of Science, Department of Earth and Planetary Science
  • Mar. 2007, The University of Tokyo, Faculty of Science, Department of Earth and Planetary Physics

Career

  • Apr. 2020 - Present, Ibaraki University, Faculty of Science, Associate Professor
  • Apr. 2015 - Mar. 2020, Ibaraki University, Faculty of Science, Assistant Professor
  • 01 Apr. 2013 - 31 Mar. 2015, Postdoctoral Research Fellow at Max Planck Institute for Chemistry (Mainz, Germany)
  • Apr. 2013 - Mar. 2015, Max Planck Institute for Chemistry (Mainz, Germany), Postdoctoral Research Fellow
  • Apr. 2012 - Mar. 2013, The University of Tokyo, Department of Earth and Planetary Science, Graduate School of Science, JSPS Research Fellow (PD)
  • Apr. 2011 - Mar. 2012, The University of Tokyo, Department of Earth and Planetary Science, Graduate School of Science, JSPS Research Fellow (DC2)

Member History

  • Jan. 2025 - Present, 将来計画専門委員, 日本惑星科学会
  • Jan. 2025 - Present, 運営委員, 日本惑星科学会
  • Jan. 2023 - Present, Publications Committee, The Meteoritical Society
  • Jan. 2021 - Present, 行事部会員, 日本惑星科学会
  • Jan. 2019 - Present, 総務専門委員, 日本惑星科学会
  • May 2019 - May 2021, 学会賞選考委員, 日本惑星科学会
  • 2016 - 2019, JpGUプログラム委員, 日本地球化学会

■Research activity information

Award

  • Oct. 2016, Outstanding Contribution in Reviewing, Geochimica et Cosmochimica Acta, Geochimica et Cosmochimica Acta
    Official journal
  • Aug. 2016, Ibaraki University president commendation for science (Encouraging prize), Ibaraki University
    Others
  • Sep. 2015, Encouraging prize, The Geochemical Society of Japan, The Geochemical Society of Japan
    Japan society
  • Mar. 2012, Encouraging prize for Ph.D. thesis, School of Science, The University of Tokyo, School of Science, The University of Tokyo
    Others
  • Oct. 2011, Best presentation award, The Japanese Society for Planetary Sciences, 日本惑星科学会
    Japan society
  • Dec. 2010, Best oral presentation award, The Mass Spectrometry Society of Japan (Isotope branch), 質量分析学会同位体比部会
    Japan society

Paper

  • Low-Temperature Aqueous Alteration of Chondrites
    Martin R. Lee; Conel M. O’D. Alexander; Addi Bischoff; Adrian J. Brearley; Elena Dobrică; Wataru Fujiya; Corentin Le Guillou; Ashley J. King; Elishevah van Kooten; Alexander N. Krot; Jan Leitner; Yves Marrocchi; Markus Patzek; Michail I. Petaev; Laurette Piani; Olga Pravdivtseva; Laurent Remusat; Myriam Telus; Akira Tsuchiyama; Lionel G. Vacher, Abstract

    Chondritic meteorites (chondrites) contain evidence for the interaction of liquid water with the interiors of small bodies early in Solar System history. Here we review the processes, products and timings of the low-temperature aqueous alteration reactions in CR, CM, CI and ungrouped carbonaceous chondrites, the asteroids Ryugu and Bennu, and hydrated dark clasts in different types of meteorites. We first consider the nature of chondritic lithologies and the insights that they provide into alteration conditions, subdivided by the mineralogy and petrology of hydrated chondrites, the mineralogy of hydrated dark clasts, the effects of alteration on presolar grains, and the evolution of organic matter. We then describe the properties of the aqueous fluids and how they reacted with accreted material as revealed by physicochemical modelling and hydrothermal experiments, the analysis of fluid inclusions in aqueously formed minerals, and isotope tracers. Lastly, we outline the chronology of aqueous alteration reactions as determined using the 53Mn-53Cr and 129I-129Xe systems., Springer Science and Business Media LLC
    Space Science Reviews, 04 Feb. 2025, [Reviewed]
  • Metasomatic Alteration of Type 3 Ordinary and Carbonaceous Chondrites
    A. N. Krot; M. I. Petaev; L. Piani; Y. Marrocchi; W. Fujiya; O. V. Pravdivtseva; E. Dobrică; L. G. Vacher; A. J. King; M. Lee; E. Van Kooten; B. Jacobsen; C. M. O’D. Alexander; A. Bischoff; A. J. Brearley; C. Le Guillou; L. Remusat; J. Leitner; G. R. Huss, Abstract

    Metasomatism refers to the process during which a pre-existing rock undergoes compositional and mineralogical transformations associated with chemical reactions triggered by the reaction of fluids which invade the protolith. It changes chemical compositions of minerals, promotes their dissolution and precipitation of new minerals. In this paper, we review metasomatic alteration of type 3 ordinary (H, L, LL) and carbonaceous (CV, CO, CK) chondrites, including (i) secondary mineralization, (ii) physicochemical conditions, (iii) chronology (53Mn-53Cr, 26Al-26Mg, 129I-129Xe) of metasomatic alteration, (iv) records of metasomatic alteration in H, O, N, C, S, and Cl isotopic systematics, (v) effects of metasomatic alteration on O- and Al-Mg-isotope systematics of primary minerals in chondrules and refractory inclusions, and (vi) sources of water ices in metasomatically altered CV, CO, and ordinary chondrites, and outline future studies., Springer Science and Business Media LLC
    Space Science Reviews, 20 Jan. 2025, [Reviewed]
  • Thermal metamorphism and volatile evolution in unequilibrated ordinary chondrites: Implications for the delivery of hydrogen to terrestrial planets
    L.G. Vacher; J. Eschrig; L. Bonal; W. Fujiya; L. Flandinet; P. Beck, Elsevier BV
    Geochimica et Cosmochimica Acta, Dec. 2024, [Reviewed]
  • Zirconium isotope composition indicates s‐process depletion in samples returned from asteroid Ryugu
    Maria Schönbächler; Manuela A. Fehr; Tetsuya Yokoyama; Ikshu Gautam; Nao Nakanishi; Yoshinari Abe; Jérôme Aléon; Conel Alexander; Sachiko Amari; Yuri Amelin; Ken‐ichi Bajo; Martin Bizzarro; Audrey Bouvier; Richard W. Carlson; Marc Chaussidon; Byeon‐Gak Choi; Nicolas Dauphas; Andrew M. Davis; Tommaso Di Rocco; Wataru Fujiya; Ryota Fukai; Makiko K. Haba; Yuki Hibiya; Hiroshi Hidaka; Hisashi Homma; Peter Hoppe; Gary R. Huss; Kiyohiro Ichida; Tsuyoshi Iizuka; Trevor Ireland; Akira Ishikawa; Shoichi Itoh; Noriyuki Kawasaki; Noriko T. Kita; Koki Kitajima; Thorsten Kleine; Shintaro Komatani; Alexander N. Krot; Ming‐Chang Liu; Yuki Masuda; Mayu Morita; Kazuko Motomura; Frédéric Moynier; Izumi Nakai; Kazuhide Nagashima; Ann Nguyen; Larry Nittler; Morihiko Onose; Andreas Pack; Changkun Park; Laurette Piani; Liping Qin; Sara Russell; Naoya Sakamoto; Lauren Tafla; Haolan Tang; Kentaro Terada; Yasuko Terada; Tomohiro Usui; Sohei Wada; Meenakshi Wadhwa; Richard J. Walker; Katsuyuki Yamashita; Qing‐Zhu Yin; Shigekazu Yoneda; Edward D. Young; Hiroharu Yui; Ai‐Cheng Zhang; Tomoki Nakamura; Hiroshi Naraoka; Takaaki Noguchi; Ryuji Okazaki; Kanako Sakamoto; Hikaru Yabuta; Masanao Abe; Akiko Miyazaki; Aiko Nakato; Masahiro Nishimura; Tatsuaki Okada; Toru Yada; Kasumi Yogata; Satoru Nakazawa; Takanao Saiki; Satoshi Tanaka; Fuyuto Terui; Yuichi Tsuda; Sei‐ichiro Watanabe; Makoto Yoshikawa; Shogo Tachibana; Hisayoshi Yurimoto, Abstract

    Nucleosynthetic isotope variations are powerful tracers to determine genetic relationships between meteorites and planetary bodies. They can help to link material collected by space missions to known meteorite groups. The Hayabusa 2 mission returned samples from the Cb‐type asteroid (162173) Ryugu. The mineralogical, chemical, and isotopic characteristics of these samples show strong similarities to carbonaceous chondrites and in particular CI chondrites. The nucleosynthetic isotope compositions of Ryugu overlap with CI chondrites for several elements (e.g., Cr, Ti, Fe, and Zn). In contrast to these isotopes, which are of predominately supernovae origin, s‐process variations in Mo isotope data are similar to those of carbonaceous chondrites, but even more s‐process depleted. To further constrain the origin of this depletion and test whether this signature is also present for other s‐process elements, we report Zr isotope compositions for three bulk Ryugu samples (A0106, A0106‐A0107, C0108) collected from the Hayabusa 2 mission. The data are complemented with that of terrestrial rock reference materials, eucrites, and carbonaceous chondrites. The Ryugu samples are characterized by distinct 96Zr enrichment relative to Earth, indicative of a s‐process depletion. Such depletion is also observed for carbonaceous chondrites and eucrites, in line with previous Zr isotope work, but it is more extreme in Ryugu, as observed for Mo isotopes. Since s‐process Zr and Mo are coupled in mainstream SiC grains, these distinct s‐process variations might be due to SiC grain depletion in the analyzed materials, potentially caused by incomplete sample digestion, because the Ryugu samples were dissolved on a hotplate only to avoid high blank levels for other elements (e.g., Cr). However, local depletion of SiC grains cannot be excluded. An alternative, equally possible scenario is that aqueous alteration redistributed anomalous, s‐process‐depleted, Zr on a local scale, for example, into Ca‐phosphates or phyllosilicates., Wiley
    Meteoritics & Planetary Science, 25 Nov. 2024, [Reviewed]
  • Update on the 53Mn-53Cr ages of dolomite in the Ivuna CI chondrite and asteroid Ryugu sample
    Shingo Sugawara; Wataru Fujiya; Noriyuki Kawasaki; Naoya Sakamoto; Akira Yamaguchi; Hisayoshi Yurimoto, Corresponding, Elsevier BV
    Geochimica et Cosmochimica Acta, Oct. 2024, [Reviewed]
  • The Ni isotopic composition of Ryugu reveals a common accretion region for carbonaceous chondrites
    Fridolin Spitzer; Thorsten Kleine; Christoph Burkhardt; Timo Hopp; Tetsuya Yokoyama; Yoshinari Abe; Jérôme Aléon; Conel M. O’D Alexander; Sachiko Amari; Yuri Amelin; Ken-ichi Bajo; Martin Bizzarro; Audrey Bouvier; Richard W. Carlson; Marc Chaussidon; Byeon-Gak Choi; Nicolas Dauphas; Andrew M. Davis; Tommaso Di Rocco; Wataru Fujiya; Ryota Fukai; Ikshu Gautam; Makiko K. Haba; Yuki Hibiya; Hiroshi Hidaka; Hisashi Homma; Peter Hoppe; Gary R. Huss; Kiyohiro Ichida; Tsuyoshi Iizuka; Trevor R. Ireland; Akira Ishikawa; Shoichi Itoh; Noriyuki Kawasaki; Noriko T. Kita; Kouki Kitajima; Shintaro Komatani; Alexander N. Krot; Ming-Chang Liu; Yuki Masuda; Mayu Morita; Fréderic Moynier; Kazuko Motomura; Izumi Nakai; Kazuhide Nagashima; Ann Nguyen; Larry Nittler; Morihiko Onose; Andreas Pack; Changkun Park; Laurette Piani; Liping Qin; Sara S. Russell; Naoya Sakamoto; Maria Schönbächler; Lauren Tafla; Haolan Tang; Kentaro Terada; Yasuko Terada; Tomohiro Usui; Sohei Wada; Meenakshi Wadhwa; Richard J. Walker; Katsuyuki Yamashita; Qing-Zhu Yin; Shigekazu Yoneda; Edward D. Young; Hiroharu Yui; Ai-Cheng Zhang; Tomoki Nakamura; Hiroshi Naraoka; Takaaki Noguchi; Ryuji Okazaki; Kanako Sakamoto; Hikaru Yabuta; Masanao Abe; Akiko Miyazaki; Aiko Nakato; Masahiro Nishimura; Tatsuaki Okada; Toru Yada; Kasumi Yogata; Satoru Nakazawa; Takanao Saiki; Satoshi Tanaka; Fuyuto Terui; Yuichi Tsuda; Sei-ichiro Watanabe; Makoto Yoshikawa; Shogo Tachibana; Hisayoshi Yurimoto, The isotopic compositions of samples returned from Cb-type asteroid Ryugu and Ivuna-type (CI) chondrites are distinct from other carbonaceous chondrites, which has led to the suggestion that Ryugu/CI chondrites formed in a different region of the accretion disk, possibly around the orbits of Uranus and Neptune. We show that, like for Fe, Ryugu and CI chondrites also have indistinguishable Ni isotope anomalies, which differ from those of other carbonaceous chondrites. We propose that this unique Fe and Ni isotopic composition reflects different accretion efficiencies of small FeNi metal grains among the carbonaceous chondrite parent bodies. The CI chondrites incorporated these grains more efficiently, possibly because they formed at the end of the disk’s lifetime, when planetesimal formation was also triggered by photoevaporation of the disk. Isotopic variations among carbonaceous chondrites may thus reflect fractionation of distinct dust components from a common reservoir, implying CI chondrites/Ryugu may have formed in the same region of the accretion disk as other carbonaceous chondrites., American Association for the Advancement of Science (AAAS)
    Science Advances, 27 Sep. 2024, [Reviewed]
  • Chondrule-like objects and a Ca-Al-rich inclusion from comets or comet-like icy bodies
    Takaaki Noguchi; Daisuke Nakashima; Takayuki Ushikubo; Wataru Fujiya; Noriaki Ohashi; John P. Bradley; Tomoki Nakamura; Noriko T. Kita; Peter Hoppe; Hidemi Ishibashi; Makoto Kimura; Naoya Imae, Elsevier BV
    Geochimica et Cosmochimica Acta, Sep. 2024, [Reviewed]
  • Pyrrhotites in asteroid 162173 Ryugu: Records of the initial changes on their surfaces with aqueous alteration
    Hiroharu Yui; Shu-hei Urashima; Morihiko Onose; Mayu Morita; Shintaro Komatani; Izumi Nakai; Yoshinari Abe; Yasuko Terada; Hisashi Homma; Kazuko Motomura; Kiyohiro Ichida; Tetsuya Yokoyama; Kazuhide Nagashima; Jérôme Aléon; Conel M. O’D. Alexander; Sachiko Amari; Yuri Amelin; Ken-ichi Bajo; Martin Bizzarro; Audrey Bouvier; Richard W. Carlson; Marc Chaussidon; Byeon-Gak Choi; Nicolas Dauphas; Andrew M. Davis; Wataru Fujiya; Ryota Fukai; Ikshu Gautam; Makiko K. Haba; Yuki Hibiya; Hiroshi Hidaka; Peter Hoppe; Gary R. Huss; Tsuyoshi Iizuka; Trevor R. Ireland; Akira Ishikawa; Shoichi Itoh; Noriyuki Kawasaki; Noriko T. Kita; Kouki Kitajima; Thorsten Kleine; Sasha Krot; Ming-Chang Liu; Yuki Masuda; Frédéric Moynier; Ann Nguyen; Larry Nittler; Andreas Pack; Changkun Park; Laurette Piani; Liping Qin; Tommaso Di Rocco; Sara S. Russell; Naoya Sakamoto; Maria Schönbächler; Lauren Tafla; Haolan Tang; Kentaro Terada; Tomohiro Usui; Sohei Wada; Meenakshi Wadhwa; Richard J. Walker; Katsuyuki Yamashita; Qing-Zhu Yin; Shigekazu Yoneda; Edward D. Young; Ai-Cheng Zhang; Tomoki Nakamura; Hiroshi Naraoka; Takaaki Noguchi; Ryuji Okazaki; Kanako Sakamoto; Hikaru Yabuta; Masanao Abe; Akiko Miyazaki; Aiko Nakato; Masahiro Nishimura; Tatsuaki Okada; Toru Yada; Kasumi Yogata; Satoru Nakazawa; Takanao Saiki; Satoshi Tanaka; Fuyuto Terui; Yuichi Tsuda; Sei-ichiro Watanabe; Makoto Yoshikawa; Shogo Tachibana; Hisayoshi Yurimoto, Elsevier BV
    Geochimica et Cosmochimica Acta, Aug. 2024, [Reviewed]
  • Disequilibrium oxygen isotope distribution among aqueously altered minerals in Ryugu asteroid returned samples
    Noriko T. Kita; Kouki Kitajima; Kazuhide Nagashima; Noriyuki Kawasaki; Naoya Sakamoto; Wataru Fujiya; Yoshinari Abe; Jérôme Aléon; Conel M. O'D. Alexander; Sachiko Amari; Yuri Amelin; Ken‐ichi Bajo; Martin Bizzarro; Audrey Bouvier; Richard W. Carlson; Marc Chaussidon; Byeon‐Gak Choi; Nicolas Dauphas; Andrew M. Davis; Tommaso Di Rocco; Ryota Fukai; Ikshu Gautam; Makiko K. Haba; Yuki Hibiya; Hiroshi Hidaka; Hisashi Homma; Peter Hoppe; Gary R. Huss; Kiyohiro Ichida; Tsuyoshi Iizuka; Trevor R. Ireland; Akira Ishikawa; Shoichi Itoh; Thorsten Kleine; Shintaro Komatani; Alexander N. Krot; Ming‐Chang Liu; Yuki Masuda; Kevin D. McKeegan; Mayu Morita; Kazuko Motomura; Frédéric Moynier; Izumi Nakai; Ann Nguyen; Larry Nittler; Morihiko Onose; Andreas Pack; Changkun Park; Laurette Piani; Liping Qin; Sara S. Russell; Maria Schönbächler; Lauren Tafla; Haolan Tang; Kentaro Terada; Yasuko Terada; Tomohiro Usui; Sohei Wada; Meenakshi Wadhwa; Richard J. Walker; Katsuyuki Yamashita; Qing‐Zhu Yin; Tetsuya Yokoyama; Shigekazu Yoneda; Edward D. Young; Hiroharu Yui; Ai‐Cheng Zhang; Tomoki Nakamura; Hiroshi Naraoka; Takaaki Noguchi; Ryuji Okazaki; Kanako Sakamoto; Hikaru Yabuta; Masanao Abe; Akiko Miyazaki; Aiko Nakato; Masahiro Nishimura; Tatsuaki Okada; Toru Yada; Kasumi Yogata; Satoru Nakazawa; Takanao Saiki; Satoshi Tanaka; Fuyuto Terui; Yuichi Tsuda; Sei‐ichiro Watanabe; Makoto Yoshikawa; Shogo Tachibana; Hisayoshi Yurimoto, Abstract

    Oxygen 3‐isotope ratios of magnetite and carbonates in aqueously altered carbonaceous chondrites provide important clues to understanding the evolution of the fluid in the asteroidal parent bodies. We conducted oxygen 3‐isotope analyses of magnetite, dolomite, and breunnerite in two sections of asteroid Ryugu returned samples, A0058 and C0002, using a secondary ion mass spectrometer (SIMS). Magnetite was analyzed by using a lower primary ion energy that reduced instrumental biases due to the crystal orientation effect. We found two groups of magnetite data identified from the SIMS pit morphologies: (1) higher δ18O (from 3‰ to 7‰) and ∆17O (~2‰) with porous SIMS pits mostly from spherulitic magnetite, and (2) lower δ18O (~ −3‰) and variable ∆17O (0‰–2‰) mostly from euhedral magnetite. Dolomite and breunnerite analyses were conducted using multi‐collection Faraday cup detectors with precisions ≤0.3‰. The instrumental bias correction was applied based on carbonate compositions in two ways, using Fe and (Fe + Mn) contents, respectively, because Ryugu dolomite contains higher amounts of Mn than the terrestrial standard. Results of dolomite and breunnerite analyses show a narrow range of ∆17O; 0.0‰–0.3‰ for dolomite in A0058 and 0.2‰–0.8‰ for dolomite and breunnerite in C0002. The majority of breunnerite, including large ≥100 μm grains, show systematically lower δ18O (~21‰) than dolomite (25‰–30‰ and 23‰–27‰ depending on the instrumental bias corrections). The equilibrium temperatures between magnetite and dolomite from the coarse‐grained lithology in A0058 are calculated to be 51 ± 11°C and 78 ± 14°C, depending on the instrumental bias correction scheme for dolomite; a reliable temperature estimate would require a Mn‐bearing dolomite standard to evaluate the instrumental bias corrections, which is not currently available. These results indicate that the oxygen isotope ratios of aqueous fluids in the Ryugu parent asteroid were isotopically heterogeneous, either spatially, or temporary. Initial water ice accreted to the Ryugu parent body might have ∆17O > 2‰ that was melted and interacted with anhydrous solids with the initial ∆17O < 0‰. In the early stage of aqueous alteration, spherulitic magnetite and calcite formed from aqueous fluid with ∆17O ~ 2‰ that was produced by isotope exchange between water (∆17O > 2‰) and anhydrous solids (∆17O < 0‰). Dolomite and breunnerite, along with some magnetite, formed at the later stage of aqueous alteration under higher water‐to‐rock ratios where the oxygen isotope ratios were nearly at equilibrium between fluid and solid phases. Including literature data, δ18O of carbonates decreased in the order calcite, dolomite, and breunnerite, suggesting that the temperature of alteration might have increased with the degree of aqueous alteration., Wiley
    Meteoritics & Planetary Science, Apr. 2024, [Reviewed]
  • Pervasive aqueous alteration in the early Solar System revealed by potassium isotopic variations in Ryugu samples and carbonaceous chondrites
    Yan Hu; Frédéric Moynier; Wei Dai; Marine Paquet; Tetsuya Yokoyama; Yoshinari Abe; Jérôme Aléon; Conel M. O'D. Alexander; Sachiko Amari; Yuri Amelin; Ken-ichi Bajo; Martin Bizzarro; Audrey Bouvier; Richard W. Carlson; Marc Chaussidon; Byeon-Gak Choi; Nicolas Dauphas; Andrew M. Davis; Tommaso Di Rocco; Wataru Fujiya; Ryota Fukai; Ikshu Gautam; Makiko K. Haba; Yuki Hibiya; Hiroshi Hidaka; Hisashi Homma; Peter Hoppe; Gary R. Huss; Kiyohiro Ichida; Tsuyoshi Iizuka; Trevor R. Ireland; Akira Ishikawa; Shoichi Itoh; Noriyuki Kawasaki; Noriko T. Kita; Koki Kitajima; Thorsten Kleine; Shintaro Komatani; Alexander N. Krot; Ming-Chang Liu; Yuki Masuda; Mayu Morita; Kazuko Motomura; Izumi Nakai; Kazuhide Nagashima; David Nesvorný; Ann Nguyen; Larry Nittler; Morihiko Onose; Andreas Pack; Changkun Park; Laurette Piani; Liping Qin; Sara S. Russell; Naoya Sakamoto; Maria Schönbächler; Lauren Tafla; Haolan Tang; Kentaro Terada; Yasuko Terada; Tomohiro Usui; Sohei Wada; Meenakshi Wadhwa; Richard J. Walker; Katsuyuki Yamashita; Qing-Zhu Yin; Shigekazu Yoneda; Edward D. Young; Hiroharu Yui; Ai-Cheng Zhang; Tomoki Nakamura; Hiroshi Naraoka; Takaaki Noguchi; Ryuji Okazaki; Kanako Sakamoto; Hikaru Yabuta; Masanao Abe; Akiko Miyazaki; Aiko Nakato; Masahiro Nishimura; Tatsuaki Okada; Toru Yada; Kasumi Yogata; Satoru Nakazawa; Takanao Saiki; Satoshi Tanaka; Fuyuto Terui; Yuichi Tsuda; Sei-ichiro Watanabe; Makoto Yoshikawa; Shogo Tachibana; Hisayoshi Yurimoto, Elsevier BV
    Icarus, Feb. 2024, [Reviewed]
  • Hydrogen in magnetite from asteroid Ryugu
    J. Aléon; S. Mostefaoui; H. Bureau; D. Vangu; H. Khodja; K. Nagashima; N. Kawasaki; Y. Abe; C. M. O'D. Alexander; S. Amari; Y. Amelin; K. Bajo; M. Bizzarro; A. Bouvier; R. W. Carlson; M. Chaussidon; B.‐G. Choi; N. Dauphas; A. M. Davis; T. Di Rocco; W. Fujiya; R. Fukai; I. Gautam; M. K. Haba; Y. Hibiya; H. Hidaka; H. Homma; P. Hoppe; G. R. Huss; K. Ichida; T. Iizuka; T. R. Ireland; A. Ishikawa; S. Itoh; N. T. Kita; K. Kitajima; T. Kleine; S. Komatani; A. N. Krot; M.‐C. Liu; Y. Masuda; M. Morita; K. Motomura; F. Moynier; I. Nakai; A. Nguyen; L. R. Nittler; M. Onose; A. Pack; C. Park; L. Piani; L. Qin; S. S. Russell; N. Sakamoto; M. Schönbächler; L. Tafla; H. Tang; K. Terada; Y. Terada; T. Usui; S. Wada; M. Wadhwa; R. J. Walker; K. Yamashita; Q.‐Z. Yin; T. Yokoyama; S. Yoneda; E. D. Young; H. Yui; A.‐C. Zhang; T. Nakamura; H. Naraoka; T. Noguchi; R. Okazaki; K. Sakamoto; H. Yabuta; M. Abe; A. Miyazaki; A. Nakato; M. Nishimura; T. Okada; T. Yada; K. Yogata; S. Nakazawa; T. Saiki; S. Tanaka; F. Terui; Y. Tsuda; S. Watanabe; M. Yoshikawa; S. Tachibana; H. Yurimoto, Abstract

    In order to gain insights on the conditions of aqueous alteration on asteroid Ryugu and the origin of water in the outer solar system, we developed the measurement of water content in magnetite at the micrometer scale by secondary ion mass spectrometry (NanoSIMS) and determined the H and Si content of coarse‐grained euhedral magnetite grains (polyhedral magnetite) and coarse‐grained fibrous (spherulitic) magnetite from the Ryugu polished section A0058‐C1001. The hydrogen content in magnetite ranges between ~900 and ~3300 wt ppm equivalent water and is correlated with the Si content. Polyhedral magnetite has low and homogenous silicon and water content, whereas fibrous magnetite shows correlated Si and water excesses. These excesses can be explained by the presence of hydrous Si‐rich amorphous nanoinclusions trapped during the precipitation of fibrous magnetite away from equilibrium and testify that fibrous magnetite formed from a hydrous gel with possibly more than 20 wt% water. An attempt to determine the water content in sub‐μm framboids indicates that additional calibration and contamination issues must be addressed before a safe conclusion can be drawn, but hints at elevated water content as well. The high water content in fibrous magnetite, expected to be among the first minerals to crystallize at low water–rock ratio, points to the control of water content by local conditions of magnetite precipitation rather than large‐scale alteration conditions. Systematic lithological variations associated with water‐rich and water‐poor magnetite suggest that the global context of alteration may be better understood if local water concentrations are compared with millimeter‐scale distribution of the various morphologies of magnetite. Finally, the high water content in the magnetite precursor gel indicates that the initial O isotopic composition in alteration water must not have been very different from that of the earliest magnetite crystals., Wiley
    Meteoritics & Planetary Science, 26 Jan. 2024, [Reviewed]
  • Curation protocol of Phobos sample returned by Martian Moons eXploration.
    Fukai R.; Usui T.; Fujiya W.; Takano Y.; Bajo K.; Beck A.; Bonato E.; Chabot M. L.; Furukawa Y.; Genda H.; Hibiya Y.; Jourdan F.; Kleine T.; Koike M.; Matsuoka M.; Miura Y. N.; Moynier F.; Okazaki R.; Russell S. S.; Sumino H.; Zolensky M. E.; Sugahara H.; Tachibana S.; Sakamoto K.; Abe M.; Cho Y. and Kuramoto K.
    Meteoritics & Planetary Science, Jan. 2024, [Reviewed]
  • Analysis of Cation Composition in Dolomites on the Intact Particles Sampled from Asteroid Ryugu
    Mayu Morita; Hiroharu Yui; Shu-hei Urashima; Morihiko Onose; Shintaro Komatani; Izumi Nakai; Yoshinari Abe; Yasuko Terada; Hisashi Homma; Kazuko Motomura; Kiyohiro Ichida; Tetsuya Yokoyama; Kazuhide Nagashima; Jérôme Aléon; Conel M. O’D. Alexander; Sachiko Amari; Yuri Amelin; Ken-ichi Bajo; Martin Bizzarro; Audrey Bouvier; Richard W. Carlson; Marc Chaussidon; Byeon-Gak Choi; Nicolas Dauphas; Andrew M. Davis; Wataru Fujiya; Ryota Fukai; Ikshu Gautam; Makiko K. Haba; Yuki Hibiya; Hiroshi Hidaka; Peter Hoppe; Gary R. Huss; Tsuyoshi Iizuka; Trevor R. Ireland; Akira Ishikawa; Shoichi Itoh; Noriyuki Kawasaki; Noriko T. Kita; Kouki Kitajima; Thorsten Kleine; Sasha Krot; Ming-Chang Liu; Yuki Masuda; Frédéric Moynier; Ann Nguyen; Larry Nittler; Andreas Pack; Changkun Park; Laurette Piani; Liping Qin; Tommaso Di Rocco; Sara S. Russell; Naoya Sakamoto; Maria Schönbächler; Lauren Tafla; Haolan Tang; Kentaro Terada; Tomohiro Usui; Sohei Wada; Meenakshi Wadhwa; Richard J. Walker; Katsuyuki Yamashita; Qing-Zhu Yin; Shigekazu Yoneda; Edward D. Young; Ai-Cheng Zhang; Tomoki Nakamura; Hiroshi Naraoka; Takaaki Noguchi; Ryuji Okazaki; Kanako Sakamoto; Hikaru Yabuta; Masanao Abe; Akiko Miyazaki; Aiko Nakato; Masahiro Nishimura; Tatsuaki Okada; Toru Yada; Kasumi Yogata; Satoru Nakazawa; Takanao Saiki; Satoshi Tanaka; Fuyuto Terui; Yuichi Tsuda; Sei-ichiro Watanabe; Makoto Yoshikawa; Shogo Tachibana; Hisayoshi Yurimoto, American Chemical Society (ACS)
    Analytical Chemistry, 29 Dec. 2023, [Reviewed]
  • Neodymium‐142 deficits and samarium neutron stratigraphy of C‐type asteroid (162173) Ryugu
    Zachary A. Torrano; Michelle K. Jordan; Timothy D. Mock; Richard W. Carlson; Ikshu Gautam; Makiko K. Haba; Tetsuya Yokoyama; Yoshinari Abe; Jérôme Aléon; Conel Alexander; Sachiko Amari; Yuri Amelin; Ken‐ichi Bajo; Martin Bizzarro; Audrey Bouvier; Marc Chaussidon; Byeon‐Gak Choi; Nicolas Dauphas; Andrew M. Davis; Tommaso Di Rocco; Wataru Fujiya; Ryota Fukai; Yuki Hibiya; Hiroshi Hidaka; Hisashi Homma; Peter Hoppe; Gary R. Huss; Kiyohiro Ichida; Tsuyoshi Iizuka; Trevor Ireland; Akira Ishikawa; Shoichi Itoh; Noriyuki Kawasaki; Noriko T. Kita; Koki Kitajima; Thorsten Kleine; Shintaro Komatani; Alexander N. Krot; Ming‐Chang Liu; Yuki Masuda; Kevin D. McKeegan; Mayu Morita; Kazuko Motomura; Frédéric Moynier; Izumi Nakai; Kazuhide Nagashima; Ann Nguyen; Larry Nittler; Morihiko Onose; Andreas Pack; Changkun Park; Laurette Piani; Liping Qin; Sara Russell; Naoya Sakamoto; Maria Schönbächler; Lauren Tafla; Haolan Tang; Kentaro Terada; Yasuko Terada; Tomohiro Usui; Sohei Wada; Meenakshi Wadhwa; Richard J. Walker; Katsuyuki Yamashita; Qing‐Zhu Yin; Shigekazu Yoneda; Edward D. Young; Hiroharu Yui; Ai‐Cheng Zhang; Tomoki Nakamura; Hiroshi Naraoka; Takaaki Noguchi; Ryuji Okazaki; Kanako Sakamoto; Hikaru Yabuta; Masanao Abe; Akiko Miyazaki; Aiko Nakato; Masahiro Nishimura; Tatsuaki Okada; Toru Yada; Kasumi Yogata; Satoru Nakazawa; Takanao Saiki; Satoshi Tanaka; Fuyuto Terui; Yuichi Tsuda; Sei‐ichiro Watanabe; Makoto Yoshikawa; Shogo Tachibana; Hisayoshi Yurimoto, Abstract

    We report Nd and Sm isotopic compositions of four samples of Ryugu returned by the Hayabusa2 mission, including “A” (first touchdown) and “C” (second touchdown) samples, and several carbonaceous chondrites to evaluate potential genetic relationships between Ryugu and known chondrite groups and track the cosmic ray exposure history of Ryugu. We resolved Nd and Sm isotopic anomalies in small (<20 ng Nd and Sm) sample sizes via thermal ionization mass spectrometer using 1013 Ω amplifiers. Ryugu samples exhibit resolvable negative μ142Nd values consistent with carbonaceous chondrite values, suggesting that Ryugu is related to the parent bodies of carbonaceous chondrites. Ryugu's negative μ149Sm values are the result of exposure to galactic cosmic rays, as demonstrated by the correlation between 150Sm/152Sm and 149Sm/152Sm ratios that fall along the expected neutron capture correlation line. The neutron fluence calculated in the “A” samples (2.75 ± 1.94 × 1015 n cm−2) is slightly higher compared to the “C” samples (0.95 ± 2.04 × 1015 n cm−2), though overlapping within measurement uncertainty. The Sm results for Ryugu, at this level of precision, thus are consistent with a well‐mixed surface layer at least to the depths from which the “A” and “C” samples derive., Wiley
    Meteoritics & Planetary Science, 07 Dec. 2023, [Reviewed]
  • Nucleosynthetic s-process depletion in Mo from Ryugu samples returned by Hayabusa2.
    Nakanishi N.; Yokoyama T.; Ishikawa A.; Walker R. J.; Abe Y.; Aléon J.; Alexander C. M. O'D.; Amari S.; Amelin Y.; Bajo K.; Bizzarro M.; Bouvier A.; Carlson R. W.; Chaussidon M.; Choi B.-G.; Dauphas N.; Davis A. M.; Di Rocco T.; Fujiya W.; Fukai R.; Guntam I.; Haba M. K.; Hibiya Y.; Hidaka H.; Homma H.; Hoppe P.; Huss G. R.; Ichida K.; Iizuka T.; Ireland T. R.; Itoh S.; Kawasaki N.; Kita N. T. Kitajima K.; Kleine T.; Komatani S.; Krot A. N.; Liu M.-C.; Masuda Y.; Morita M.; Motomura K.; Moynier F.; Nakai I.; Nagashima K.; Nguyen A. N.; Nittler L.; Onose M.; Pack A.; Park C.; Piani L.; Qin L.; Russell S. S.; Sakamoto N.; Schönbächler M.; Tafla L.; Tang H.; Terada K.; Terada Y.; Usui T.; Wada S.; Wadhwa M.; Yamashita K.; Yin Q.-Z.; Yoneda S.; Young E. D.; Yui H.; Zhang A.-C.; Nakamura T.; Naraoka H.; Noguchi T.; Okazaki R.; Sakamoto K.; Yabuta H.; Abe M.; Miyazaki A.; Nakato A.; Nishimura M.; Okada T.; Yada T.; Yogata K.; Nakazawa S.; Saiki T.; Tanaka S.; Terui F.; Tsuda Y.; Watanabe S.; Yoshikawa M.; Tachibana S. and Yurimoto H.
    Geochemical Perspectives Letters, Dec. 2023, [Reviewed]
  • The magnesium isotope composition of samples returned from asteroid Ryugu.
    Bizzarro M.; M. Schiller M.; Yokoyama T.; Abe Y.; Aléon J.; Alexander C. M. O'D.; Amari S.; Amelin Y.; Bajo K.; Bouvier A.; Carlson R. W.; Chaussidon M.; Choi B.-G.; Dauphas N.; Davis A. M.; Di Rocco T.; Fujiya W.; Fukai R.; Guntam I.; Haba M. K.; Hibiya Y.; Hidaka H.; Homma H.; Hoppe P.; Huss G. R.; Ichida K.; Iizuka T.; Ireland T. R.; Ishikawa A.; Itoh S.; Kawasaki N.; Kita N. T. Kitajima K.; Kleine T.; Komatani S.; Krot A. N.; Liu M.-C.; Masuda Y.; Morita M.; Moynier F.; Motomura K.; Nakai I.; Nagashima K.; Nesvorný D.; Nguyen A. N.; Nittler L.; Onose M.; Pack A.; Park C.; Piani L.; Qin L.; Russell S. S.; Sakamoto N.; Schönbächler M.; Tafla L.; Tang H.; Terada K.; Terada Y.; Usui T.; Wada S.; Wadhwa M.; Walker R. J.; Yamashita K.; Yin Q.-Z.; Yoneda S.; Young E. D.; Yui H.; Zhang A.-C.; Nakamura T.; Naraoka H.; Noguchi T.; Okazaki R.; Sakamoto K.; Yabuta H.; Abe M.; Miyazaki A.; Nakato A.; Nishimura M.; Okada T.; Yada T.; Yogata K.; Nakazawa S.; Saiki T.; Tanaka S.; Terui F.; Tsuda Y.; Watanabe S.; Yoshikawa M.; Tachibana S. and Yurimoto H.
    The Astrophysical Journal Letters, Nov. 2023, [Reviewed]
  • Water circulation in Ryugu asteroid affected the distribution of nucleosynthetic isotope anomalies in returned sample.
    Yokoyama T.; Wadhwa M.; Iizuka T.; Rai V. Guntam I.; Hibiya Y.; Masuda Y.; Haba M. K.; Fukai R.; Hines R.; Phelan N.; Abe Y.; Aléon J.; Alexander C. M. O'D.; Amari S.; Amelin Y.; Bajo K.; Bizzarro M.; Bouvier A.; Carlson R. W.; Chaussidon M.; Choi B.-G.; Dauphas N.; Davis A. M.; Di Rocco T.; Fujiya W.; Hidaka H.; Homma H.; Hoppe P.; Huss G. R.; Ichida K.; Ireland T. R.; Ishikawa A.; Itoh S.; Kawasaki N.; Kita N. T. Kitajima K.; Kleine T.; Komatani S.; Krot A. N.; Liu M.-C.; McKeegan K. D.; Morita M.; Motomura K.; Moynier F.; Nakai I.; Nagashima K.; Nguyen A. N.; Nittler L.; Onose M.; Pack A.; Park C.; Piani L.; Qin L.; Russell S. S.; Sakamoto N.; Schönbächler M.; Tafla L.; Tang H.; Terada K.; Terada Y.; Usui T.; Wada S.; Walker R. J.; Yamashita K.; Yin Q.-Z.; Yoneda S.; Young E. D.; Yui H.; Zhang A.-C.; Nakamura T.; Naraoka H.; Noguchi T.; Okazaki R.; Sakamoto K.; Yabuta H.; Abe M.; Miyazaki A.; Nakato A.; Nishimura M.; Okada T.; Yada T.; Yogata K.; Nakazawa S.; Saiki T.; Tanaka S.; Terui F.; Tsuda Y.; Watanabe S.; Yoshikawa M.; Tachibana S. and Yurimoto H.
    Science Advances, Nov. 2023, [Reviewed]
  • The oxygen isotopic composition of samples returned from asteroid Ryugu with implications for the nature of the parent planetesimal
    Tang H.; Young E. D.; Tafla L.; Park C.; Di Rocco T.; Abe Y.; Aléon J.; Alexander C. M. O'D.; Amari S.; Amelin Y.; Bajo K.; Bizzarro M.; Bouvier A.; Carlson R. W.; Chaussidon M.; Choi B.-G.; Dauphas N.; Davis A. M.; Fujiya W.; Fukai R.; Gautam I.; Haba M. K.; Hibiya Y.; Hidaka H.; Homma H.; Hoppe P.; Huss G. R.; Ichida K.; Iizuka T.; Ireland T. R.; Ishikawa A.; Ito M.; Itoh S.; Kawasaki N.; Kita N. T. Kitajima K.; Kleine T.; Komatani S.; Krot A. N.; Liu M.-C.; Masuda Y.; McKeegan K. D.; Morita M.; Motomura K.; Moynier F.; Nagashima K.; Nakai I.; Nguyen A. N.; Nittler L.; Onose M.; Pack A.; Park C.; Piani L.; Qin L.; Russell S. S.; Sakamoto N.; Schönbächler M.; Terada K.; Terada Y.; Usui T.; Wada S.; Wadhwa M.; Walker R. J.; Yamashita K.; Yin Q.-Z.; Yokoyama T.; Yoneda S.; Yui H.; Zhang A.-C.; Nakamura T.; Naraoka H.; Noguchi T.; Okazaki R.; Sakamoto K.; Yabuta H.; Abe M.; Miyazaki A.; Nakato A.; Nishimura M.; Okada T.; Yada T.; Yogata K.; Nakazawa S.; Saiki T.; Tanaka S.; Terui F.; Tsuda Y.; Watanabe S.; Yoshikawa M.; Tachibana S. and Yurimoto H. (2023)
    The Planetary Science Journal, Aug. 2023, [Reviewed]
  • Carbonate record of temporal change in oxygen fugacity and gaseous species in asteroid Ryugu
    Fujiya W.; Kawasaki N.; Nagashima K.; Sakamoto N.; Alexander C. M. O'D.; Kita N. T.; Kitajima K.; Abe Y.; Aléon J.; Amari S.; Amelin Y.; Bajo K.; Bizzarro M.; Bouvier A.; Carlson R. W.; Chaussidon M.; Choi B.-G.; Dauphas N.; Davis A. M.; Di Rocco T.; Fukai R.; Gautam I.; Haba M. K.; Hibiya Y.; Hidaka H.; Homma H.; Hoppe P.; Huss G. R.; Ichida K.; Iizuka T.; Ireland T. R.; Ishikawa A.; Itoh S.; Kleine T.; Komatani S.; Krot A. N.; Liu M.-C.; Masuda Y.; McKeegan K. D.; Morita M.; Motomura K.; Moynier F.; Nakai I.; Nguyen A.; Nittler L. R.; Onose M.; Pack A.; Park C.; Piani L.; Qin L.; Russell S. S.; Schönbächler M.; Tafla L.; Tang H.; Terada K.; Terada Y.; Usui T.; Wada S.; Wadhwa M.; Walker R. J.; Yamashita K.; Yin Q.-Z.; Yokoyama T.; Yoneda S.; Young E. D.; Yui H.; Zhang A.-C.; Nakamura T.; Naraoka H.; Noguchi T.; Okazaki R.; Sakamoto K.; Yabuta H.; Abe M.; Miyazaki A.; Nakato A.; Nishimura M.; Okada T.; Yada T.; Yogata K.; Nakazawa S.; Saiki T.; Tanaka S.; Terui F.; Tsuda Y.; Watanabe S.; Yoshikawa M.; Tachibana S. and Yurimoto H., Lead
    Nature Geoscience, Jul. 2023, [Reviewed]
  • Abundant presolar grains and primordial organics preserved in carbon-rich exogenous clasts in asteroid Ryugu
    Nguyen A. N.; Mane P.; Keller L. P.; Piani L.; Abe Y.; Aléon J.; Alexander C. M. O'D.; Amari S.; Amelin Y.; Bajo K.; Bizzarro M.; Bouvier A.; Carlson R. W.; Chaussidon M.; Choi B.-G.; Dauphas N.; Davis A. M.; Di Rocco T.; Fujiya W.; Fukai R.; Gautam I.; Haba M. K.; Hibiya Y.; Hidaka H.; Homma H.; Hoppe P.; Huss G. R.; Ichida K.; Iizuka T.; Ireland T. R.; Ishikawa A.; Itoh S.; Kawasaki N.; Kita N. T. Kitajima K.; Kleine T.; Komatani S.; Krot A. N.; Liu M.-C.; Masuda Y.; McKeegan K. D.; Morita M.; Motomura K.; Moynier F.; Nakai I.; Nagashima K.; Nesvorný D.; Nittler L.; Onose M.; Pack A.; Park C.; Qin L.; Russell S. S.; Sakamoto N.; Schönbächler M.; Tafla L.; Tang H.; Terada K.; Terada Y.; Usui T.; Wada S.; Wadhwa M.; Walker R. J.; Yamashita K.; Yin Q.-Z.; Yokoyama T.; Yoneda S.; Young E. D.; Yui H.; Zhang A.-C.; Nakamura T.; Naraoka H.; Noguchi T.; Okazaki R.; Sakamoto K.; Yabuta H.; Abe M.; Miyazaki A.; Nakato A.; Nishimura M.; Okada T.; Yada T.; Yogata K.; Nakazawa S.; Saiki T.; Tanaka S.; Terui F.; Tsuda Y.; Watanabe S.; Yoshikawa M.; Tachibana S. and Yurimoto H.
    Science Advances, Jul. 2023, [Reviewed]
  • Hydrogen isotopic composition of hydrous minerals in asteroid Ryugu
    Piani L.; Nagashima K.; Kawasaki N.; Sakamoto N.; Bajo K.; Abe Y.; Aléon J.; Alexander C. M. O'D.; Amari S.; Amelin Y.; Bizzarro M.; Bouvier A.; Carlson R. W.; Chaussidon M.; Choi B.-G.; Dauphas N.; Davis A. M.; Di Rocco T.; Fujiya W.; Fukai R.; Gautam I.; Haba M. K.; Hibiya Y.; Hidaka H.; Homma H.; Hoppe P.; Huss G. R.; Ichida K.; Iizuka T.; Ireland T. R.; Ishikawa A.; Itoh S.; Kita N. T. Kitajima K.; Kleine T.; Komatani S.; Krot A. N.; Liu M.-C.; Masuda Y.; McKeegan K. D.; Morita M.; Motomura K.; Moynier F.; Nakai I.; Nguyen A.; Nittler L. R.; Onose M.; Pack A.; Park C.; Qin L.; Russell S. S.; Schönbächler M.; Tafla L.; Tang H.; Terada K.; Terada Y.; Usui T.; Wada S.; Wadhwa M.; Walker R. J.; Yamashita K.; Yin Q.-Z.; Yokoyama T.; Yoneda S.; Young E. D.; Yui H.; Zhang A.-C.; Nakamura T.; Naraoka H.; Okazaki R.; Sakamoto K.; Yabuta H.; Abe M.; Miyazaki A.; Nakato A.; Nishimura M.; Okada T.; Yada T.; Yogata K.; Nakazawa S.; Saiki T.; Tanaka S.; Terui F.; Tsuda Y.; Watanabe S.; Yoshikawa M.; Tachibana S. and Yurimoto H.
    The Astrophysical Journal Letters, Apr. 2023, [Reviewed]
  • Author Correction: Contribution of Ryugu-like material to Earth’s volatile inventory by Cu and Zn isotopic analysis (Nature Astronomy, (2022), 7, 2, (182-189), 10.1038/s41550-022-01846-1)
    Paquet, M.; Moynier, F.; Yokoyama, T.; Dai, W.; Hu, Y.; Abe, Y.; Al{\'e}on, J.; O?D. Alex; er, C.M.; Amari, S.; Amelin, Y.; Bajo, K.-I.; Bizzarro, M.; Bouvier, A.; Carlson, R.W.; Chaussidon, M.; Choi, B.-G.; Dauphas, N.; Davis, A.M.; Di Rocco, T.; Fujiya, W.; Fukai, R.; Gautam, I.; Haba, M.K.; Hibiya, Y.; Hidaka, H.; Homma, H.; Hoppe, P.; Huss, G.R.; Ichida, K.; Iizuka, T.; Irel; , T.R.; Ishikawa, A.; Ito, M.; Itoh, S.; Kawasaki, N.; Kita, N.T.; Kitajima, K.; Kleine, T.; Komatani, S.; Krot, A.N.; Liu, M.-C.; Masuda, Y.; McKeegan, K.D.; Morita, M.; Motomura, K.; Nakai, I.; Nagashima, K.; Nesvorn?, D.; Nguyen, A.N.; Nittler, L.; Onose, M.; Pack, A.; Park, C.; Piani, L.; Qin, L.; Russell, S.S.; Sakamoto, N.; Sch{\"o}nb{\"a}chler, M.; Tafla, L.; Tang, H.; Terada, K.; Terada, Y.; Usui, T.; Wada, S.; Wadhwa, M.; Walker, R.J.; Yamashita, K.; Yin, Q.-Z.; Yoneda, S.; Young, E.D.; Yui, H.; Zhang, A.-C.; Nakamura, T.; Naraoka, H.; Noguchi, T.; Okazaki, R.; Sakamoto, K.; Yabuta, H.; Abe, M.; Miyazaki, A.; Nakato, A.; Nishimura, M.; Okada, T.; Yada, T.; Yogata, K.; Nakazawa, S.; Saiki, T.; Tanaka, S.; Terui, F.; Tsuda, Y.; Watanabe, S.-I.; Yoshikawa, M.; Tachibana, S.; Yurimoto, H.
    Nature Astronomy, 2023
  • Oxygen isotopes of anhydrous primary minerals show kinship between asteroid Ryugu and comet 81P/Wild2.
    Kawasaki N.; Nagashima K.; Sakamoto N.; Matsumoto T.; Bajo; K.; Wada S.; Igami Y.; Miyake A.; Noguchi T.; Yamamoto D.; Russell; S. S.; Abe Y.; Aléon J.; Alexander C. M. O'D.; Amari S.; Amelin Y.; Bizzarro M.; Bouvier A.; Carlson R. W.; Chaussidon M.; Choi B.-G.; Dauphas N.; Davis A. M.; Di Rocco T.; Fujiya W.; Fukai R.; Gautam I.; Haba M. K.; Hibiya Y.; Hidaka H.; Homma H.; Hoppe P.; Huss G. R.; Ichida K.; Iizuka T.; Ireland T. R.; Ishikawa A.; Ito M.; Itoh S.; Kawasaki N.; Kita N. T. Kitajima K.; Kleine T.; Komatani S.; Krot A. N.; Liu M.-C.; Masuda Y.; McKeegan K. D.; Morita M.; Motomura K.; Moynier F.; Nakai I.; Nguyen A.; Nittler L. R.; Onose M.; Pack A.; Park C.; Piani L.; Qin L.; Schönbächler M.; Tafla L.; Tang H.; Terada K.; Terada Y.; Usui T.; Wadhwa M.; Walker R. J.; Yamashita K.; Yin Q.-Z.; Yokoyama T.; Yoneda S.; Young E. D.; Yui H.; Zhang A.-C.; Nakamura T.; Naraoka H.; Okazaki R.; Sakamoto K.; Yabuta H.; Abe M.; Miyazaki A.; Nakato A.; Nishimura M.; Okada T.; Yada T.; Yogata K.; Nakazawa S.; Saiki T.; Tanaka S.; Terui F.; Tsuda Y.; Watanabe S.; Yoshikawa M.; Tachibana S. and Yurimoto H.
    Science Advances, Dec. 2022, [Reviewed]
  • Contribution of Ryugu-like material to Earth’s volatile inventory by Cu and Zn isotopic analysis.
    Paquet M.; Moynier F.; Yokoyama T.; Dai W.; Hu Y.; Abe Y.; Aléon J.; Alexander C. M. O'D.; Amari S.; Amelin Y.; Bajo K.; Bizzarro M.; Bouvier A.; Carlson R. W.; Chaussidon M.; Choi B.-G.; Dauphas N.; Davis A. M.; Di Rocco T.; Fujiya W.; Fukai R.; Gautam I.; Haba M. K.; Hibiya Y.; Hidaka H.; Homma H.; Hoppe P.; Huss G. R.; Ichida K.; Iizuka T.; Ireland T. R.; Ishikawa A.; Ito M.; Itoh S.; Kawasaki N.; Kita N. T. Kitajima K.; Kleine T.; Komatani S.; Krot A. N.; Liu M.-C.; Masuda Y.; McKeegan K. D.; Morita M.; Motomura K.; Nakai I.; Nagashima K.; Nesvorný D.; Nguyen A.; Nittler L. R.; Onose M.; Pack A.; Park C.; Piani L.; Qin L.; Russell S. S.; Sakamoto N.; Schönbächler M.; Tafla L.; Tang H.; Terada K.; Terada Y.; Usui T.; Wada S.; Wadhwa M.; Walker R. J.; Yamashita K.; Yin Q.-Z.; Yoneda S.; Young E. D.; Yui H.; Zhang A.-C.; Nakamura T.; Naraoka H.; Noguchi T.; Okazaki R.; Sakamoto K.; Yabuta H.; Abe M.; Miyazaki A.; Nakato A.; Nishimura M.; Okada T.; Yada T.; Yogata K.; Nakazawa S.; Saiki T.; Tanaka S.; Terui F.; Tsuda Y.; Watanabe S.; Yoshikawa M.; Tachibana S. and Yurimoto H.
    Nature Astronomy, Dec. 2022, [Reviewed]
  • Heat-induced dolomitization of amorphous calcium magnesium carbonate (ACMC) in a CO2-filled closed System.
    Sugawara S.; Fujiya W.; Kagi H.; Yamaguchi A. and Hashizume K.
    ACS Omega, Nov. 2022, [Reviewed]
  • The Solar System calcium isotopic composition inferred from Ryugu samples.
    Moynier F.; Dai W.; Yokoyama T.; Hu Y; Paquet M.; Abe Y.; Aléon J.; Alexander C. M. O'D.; Amari S.; Amelin Y.; Bajo K.; Bizzarro M.; Bouvier A.; Carlson R. W.; Chaussidon M.; Choi B.-G.; Dauphas N.; Davis A. M.; Di Rocco T.; Fujiya W.; Fukai R.; Gautam I.; Haba M. K.; Hibiya Y.; Hidaka H.; Homma H.; Hoppe P.; Huss G. R.; Ichida K.; Iizuka T.; Ireland T. R.; Ishikawa A.; Ito M.; Itoh S.; Kawasaki N.; Kita N. T. Kitajima K.; Kleine T.; Komatani S.; Krot A. N.; Liu M.-C.; Masuda Y.; McKeegan K. D.; Morita M.; Motomura K.; Nakai I.; Nagashima K.; Nesvorný D.; Nguyen A.; Nittler L. R.; Onose M.; Pack A.; Park C.; Piani L.; Qin L.; Russell S. S.; Sakamoto N.; Schönbächler M.; Tafla L.; Tang H.; Terada K.; Terada Y.; Usui T.; Wada S.; Wadhwa M.; Walker R. J.; Yamashita K.; Yin Q.-Z.; Yoneda S.; Young E. D.; Yui H.; Zhang A.-C.; Nakamura T.; Naraoka H.; Noguchi T.; Okazaki R.; Sakamoto K.; Yabuta H.; Abe M.; Miyazaki A.; Nakato A.; Nishimura M.; Okada T.; Yada T.; Yogata K.; Nakazawa S.; Saiki T.; Tanaka S.; Terui F.; Tsuda Y.; Watanabe S.; Yoshikawa M.; Tachibana S. and Yurimoto H., European Association of Geochemistry
    Geochemical Perspectives Letters, Oct. 2022, [Reviewed]
  • Ryugu’s nucleosynthetic heritage from the outskirts of the Solar System.
    Hopp T.; Dauphas N.; Abe Y.; Aléon J.; Alexander C. M. O'D.; Amari S.; Amelin Y.; Bajo K.; Bizzarro M.; Bouvier A.; Carlson R. W.; Chaussidon M.; Choi B.-G.; Davis A. M.; Di Rocco T.; Fujiya W.; Fukai R.; Gautam I.; Haba M. K.; Hibiya Y.; Hidaka H.; Homma H.; Hoppe P.; Huss G. R.; Ichida K.; Iizuka T.; Ireland T. R.; Ishikawa A.; Ito M.; Itoh S.; Kawasaki N.; Kita N. T. Kitajima K.; Kleine T.; Komatani S.; Krot A. N.; Liu M.-C.; Masuda Y.; McKeegan K. D.; Morita M.; Motomura K.; Moynier F.; Nakai I.; Nagashima K.; Nesvorný D.; Nguyen A.; Nittler L. R.; Onose M.; Pack A.; Park C.; Piani L.; Qin L.; Russell S. S.; Sakamoto N.; Schönbächler M.; Tafla L.; Tang H.; Terada K.; Terada Y.; Usui T.; Wada S.; Wadhwa M.; Walker R. J.; Yamashita K.; Yin Q.-Z.; Yokoyama T.; Yoneda S.; Young E. D.; Yui H.; Zhang A.-C.; Nakamura T.; Naraoka H.; Noguchi T.; Okazaki R.; Sakamoto K.; Yabuta H.; Abe M.; Miyazaki A.; Nakato A.; Nishimura M.; Okada T.; Yada T.; Yogata K.; Nakazawa S.; Saiki T.; Tanaka S.; Terui F.; Tsuda Y.; Watanabe S.; Yoshikawa M.; Tachibana S. and Yurimoto H., Little is known about the origin of the spectral diversity of asteroids and what it says about conditions in the protoplanetary disk. Here, we show that samples returned from Cb-type asteroid Ryugu have Fe isotopic anomalies indistinguishable from Ivuna-type (CI) chondrites, which are distinct from all other carbonaceous chondrites. Iron isotopes, therefore, demonstrate that Ryugu and CI chondrites formed in a reservoir that was different from the source regions of other carbonaceous asteroids. Growth and migration of the giant planets destabilized nearby planetesimals and ejected some inward to be implanted into the Main Belt. In this framework, most carbonaceous chondrites may have originated from regions around the birthplaces of Jupiter and Saturn, while the distinct isotopic composition of CI chondrites and Ryugu may reflect their formation further away in the disk, owing their presence in the inner Solar System to excitation by Uranus and Neptune., American Association for the Advancement of Science (AAAS)
    Science Advances, Oct. 2022, [Reviewed]
  • Presolar stardust in asteroid Ryugu.
    Barosch J.; Nittler L. R.; Wang J.; Alexander C. M. O'D.; De Gregorio B. T.; Engrand C.; Kebukawa Y.; Nagashima K.; Stroud R. M.; Yabuta H.; Abe Y.; Aléon J.; Amari S.; Amelin Y.; Bajo K.; Bejach L.; Bizzarro M.; Bonal L.; Bouvier A.; Carlson R. W.; Chaussidon M.; Choi B.-G.; Cody G. D.; Dartois E.; Dauphas N.; Davis A. M.; Dazzi A.; Deniset-Besseau A.; Di Rocco T.; Duprat E.; Fujiya W.; Fukai R.; Gautam I.; Haba M. K.; Hashiguchi M.; Hibiya Y.; Hidaka H.; Homma H.; Hoppe P.; Huss G. R.; Ichida K.; Iizuka T.; Ireland T. R.; Ishikawa A.; Ito M.; Itoh S.; Kamide K.; Kawasaki N.; Kilcoyne A. L. D.; Kita N. T. Kitajima K.; Kleine T.; Komatani S.; Komatsu M.; Krot A. N.; Liu M.-C.; Martins Z.; Masuda Y.; Mathurin J.; McKeegan K. D.; Montagnac G.; Morita M.; Mostefaoui S.; Motomura K.; Moynier F.; Nakai I.; Nguyen A.; Ohigashi T.; Okumura T.; Onose M.; Pack A.; Park C.; Piani L.; Qin L.; Quirico E.; Remusat L.; Russell S. S.; Sakamoto N.; Sandford S. A.; Schönbächler M.; Shigenaka M.; Suga H.; Tafla L.; Takahashi Y.; Takeichi Y.; Tamenori Y.; Tang H.; Terada K.; Terada Y.; Usui T.; Vendier-Paoletti M.; Wada S.; Wadhwa M.; Wakabayashi D.; Walker R. J.; Yamashita K.; Yamashita S.; Yin Q.-Z.; Yokoyama T.; Yoneda S.; Young E. D.; Yui H.; Zhang A.-C.; Abe M.; Miyazaki A.; Nakato A.; Nakazawa S.; Nishimura M.; Okada T.; Saiki T.; Tanaka S.; Terui F.; Tsuda Y.; Watanabe S.; Yada T.; Yogata K.; Yoshikawa M.; Nakamura T.; Naraoka H.; Noguchi T.; Okazaki R.; Sakamoto K.; Tachibana S. and Yurimoto; H., Abstract

    We have conducted a NanoSIMS-based search for presolar material in samples recently returned from C-type asteroid Ryugu as part of JAXA's Hayabusa2 mission. We report the detection of all major presolar grain types with O- and C-anomalous isotopic compositions typically identified in carbonaceous chondrite meteorites: 1 silicate, 1 oxide, 1 O-anomalous supernova grain of ambiguous phase, 38 SiC, and 16 carbonaceous grains. At least two of the carbonaceous grains are presolar graphites, whereas several grains with moderate C isotopic anomalies are probably organics. The presolar silicate was located in a clast with a less altered lithology than the typical extensively aqueously altered Ryugu matrix. The matrix-normalized presolar grain abundances in Ryugu are ${4.8}_{-2.6}^{+4.7}$ ppm for O-anomalous grains, ${25}_{-5}^{+6}$ ppm for SiC grains, and ${11}_{-3}^{+5}$ ppm for carbonaceous grains. Ryugu is isotopically and petrologically similar to carbonaceous Ivuna-type (CI) chondrites. To compare the in situ presolar grain abundances of Ryugu with CI chondrites, we also mapped Ivuna and Orgueil samples and found a total of 15 SiC grains and 6 carbonaceous grains. No O-anomalous grains were detected. The matrix-normalized presolar grain abundances in the CI chondrites are similar to those in Ryugu: ${23}_{-6}^{+7}$ ppm SiC and ${9.0}_{-3.6}^{+5.4}$ ppm carbonaceous grains. Thus, our results provide further evidence in support of the Ryugu–CI connection. They also reveal intriguing hints of small-scale heterogeneities in the Ryugu samples, such as locally distinct degrees of alteration that allowed the preservation of delicate presolar material., American Astronomical Society
    The Astrophysical Journal Letters, Aug. 2022, [Reviewed]
  • Recent advances in our understanding of water and aqueous activity in chondrites.
    Vacher L. G. and Fujiya W.
    Elements, Jun. 2022, [Reviewed]
  • Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites.
    Yokoyama T.; Nagashima K.; Nakai I.; Young E. D.; Abe Y.; Aléon J.; Alexander C. M. O'D.; Amari S.; Amelin Y.; Bajo K.; Bizzarro M.; Bouvier A.; Carlson R. W.; Chaussidon M.; Choi B.-G.; Dauphas N.; Davis A. M.; Di Rocco T.; Fujiya W.; Fukai R.; Gautam I.; Haba M. K.; Hibiya Y.; Hidaka H.; Homma H.; Hoppe P.; Huss G. R.; Ichida K.; Iizuka T.; Ireland T. R.; Ishikawa A.; Ito M.; Itoh S.; Kawasaki N.; Kita N. T. Kitajima K.; Kleine T.; Komatani S.; Krot A. N.; Liu M.-C.; Masuda Y.; McKeegan K. D.; Morita M.; Motomura K.; Moynier F.; Nguyen A.; Nittler L. R.; Onose M.; Pack A.; Park C.; Piani L.; Qin L.; Russell S. S.; Sakamoto N.; Schönbächler M.; Tafla L.; Tang H.; Terada K.; Terada Y.; Usui T.; Wada S.; Wadhwa M.; Walker R. J.; Yamashita K.; Yin Q.-Z.; Yoneda S.; Yui H.; Zhang A.-C.; Connolly; H. C.; Jr. Lauretta D. S.; Nakamura T.; Naraoka H.; Noguchi T.; Okazaki R.; Sakamoto K.; Yabuta H.; Abe M.; Arakawa M.; Fujii A.; Hayakawa M.; Hirata N.; Hirata N.; Honda R.; Honda C.; Hosoda S.; Iijima Y.; Ikeda H.; Ishiguro M.; Ishihara Y.; Iwata T.; Kawahara K.; Kikuchi S.; Kitazato K.; Matsumoto K.; Matsuoka M.; Michikami T.; Mimasu Y.; Miura A.; Morota T.; Nakazawa S.; Namiki N.; Noda H.; Noguchi R.; Ogawa N.; Ogawa K.; Okada T.; Okamoto C.; Ono G.; Ozaki M.; Saiki T.; Sakatani N.; Sawada H.; Senshu H.; Shimaki Y.; Shirai K.; Sugita S.; Takei Y.; Takeuchi H.; Tanaka S.; Tatsumi E.; Terui F.; Tsuda Y.; Tsukizaki R.; Wada K.; Watanabe S.; Yamada M.; Yamada T.; Yamamoto Y.; Yano H.; Yokota Y.; Yoshihara K.; Yoshikawa M.; Yoshikawa K.; Furuya S.; Hatakeda K.; Hayashi T.; Hitomi Y.; Kumagai K.; Miyazaki A.; Nakato A.; Nishimura M.; Soejima H.; Suzuki A.; Yada T.; Yamamoto D.; Yogata K.; Yoshitake M.; Tachibana S. and Yurimoto H., Carbonaceous meteorites are thought to be fragments of C-type (carbonaceous) asteroids. Samples of the C-type asteroid (162173) Ryugu were retrieved by the Hayabusa2 spacecraft. We measure the mineralogy, bulk chemical and isotopic compositions of Ryugu samples. They are mainly composed of materials similar to carbonaceous chondrite meteorites, particularly the CI (Ivuna-type) group. The samples consist predominantly of minerals formed in aqueous fluid on a parent planetesimal. The primary minerals were altered by fluids at a temperature of 37 ± 10°C, (Stat.) (Syst.) million years after formation of the first solids in the Solar System. After aqueous alteration, the Ryugu samples were likely never heated above ~100°C. The samples have a chemical composition that more closely resembles the Sun’s photosphere than other natural samples do., American Association for the Advancement of Science (AAAS)
    Science, Jun. 2022, [Reviewed]
  • Hydrothermal activities on C-complex asteroids induced by radioactivity.
    Fujiya W.; Higashi H.; Hibiya Y.; Sugawara S.; Yamaguchi A.; Kimura M. and Hashizume K., Lead, Abstract
    C-complex asteroids, rich in carbonaceous materials, are potential sources of Earth’s volatile inventories. They are spectrally dark resembling primitive carbonaceous meteorites, and thus, C-complex asteroids are thought to be potential parent bodies of carbonaceous meteorites. However, the substantial number of C-complex asteroids exhibits surface spectra with weaker hydroxyl absorption than water-rich carbonaceous meteorites. Rather, they best correspond to meteorites showing evidence for dehydration, commonly attributed to impact heating. Here, we report an old radiometric age of 4564.7 million years ago for Ca carbonates from the Jbilet Winselwan meteorite analogous to dehydrated C-complex asteroids. The carbonates are enclosed by a high-temperature polymorph of Ca sulfates, suggesting thermal metamorphism at >300°C subsequently after aqueous alteration. This old age indicates the early onset of aqueous alteration and subsequent thermal metamorphism driven by the decay of short-lived radionuclides rather than impact heating. The breakup of original asteroids internally heated by radioactivity should result in asteroid families predominantly consisting of thermally metamorphosed materials. This explains the common occurrence of dehydrated C-complex asteroids., American Astronomical Society
    The Astrophysical Journal Letters, Jan. 2022, [Reviewed]
  • Analytical protocols for Phobos regolith samples returned by the Martian Moons eXploration (MMX) mission.
    Fujiya W.; Furukawa Y.; Sugahara H.; Koike M.; Bajo K.; Chabot N. L.; Miura Y. N.; Moynier F.; Russell S. S.; Tachibana S.; Takano Y.; Usui T. and Zolensky M. E., Lead
    Earth, Planets and Space, Jun. 2021, [Reviewed]
  • Irradiation origin of 10Be in the solar nebula: Evidence from Li-Be-B and Al-Mg isotope systematics, and REE abundances of CAIs from Yamato-81020 CO3.05 chondrite.
    Fukuda K.; Hiyagon H.; Fujiya W.; Kagoshima T.; Itano K.; Iizuka T.; Kita N. T. and Sano Y., Elsevier BV
    Geochimica et Cosmochimica Acta, Jan. 2021, [Reviewed]
  • The importance of Phobos sample return for understanding the Mars-moon System.
    Usui T.; Bajo K.; Fujiya W.; Furukawa Y.; Koike M.; Miura Y. N.; Sugahara H.; Tachibana S.; Takano Y. and Kuramoto K.
    Space Science Review, Jun. 2020, [Reviewed]
  • Carbon isotopic evolution of aqueous fluids in CM chondrites: Clues from in-situ isotope analyses within calcite grains in Yamato-791198.
    Fujiya W.; Aoki Y.; Ushikubo T.; Hashizume K. and Yamaguchi A., Lead
    Geochimica et Cosmochimica Acta, Apr. 2020, [Reviewed]
  • Origin of the short-lived radionuclide 10Be and its implications for the astronomical setting of CAI formation in the solar protoplanetary disk.
    Fukuda K.; Hiyagon H.; Fujiya W.; Takahata N.; Kagoshima T. and Sano Y.
    The Astrophysical Journal, Nov. 2019, [Reviewed]
  • Migration of D-type asteroids from the outer Solar System inferred from carbonate in meteorites.
    Fujiya W.; Hoppe P.; Ushikubo T.; Fukuda K.; Lindgren P.; Lee M. R.; Koike M.; Shirai K. and Sano Y., Lead
    Nature Astronomy, Oct. 2019, [Reviewed]
  • Oxygen isotopic ratios of primordial water in carbonaceous chondrites
    Wataru Fujiya, Elsevier B.V.
    Earth and Planetary Science Letters, 01 Jan. 2018, [Reviewed]
  • Beryllium-boron relative sensitivity factors for melilitic glasses measured with a NanoSIMS ion microprobe
    Kohei Fukuda; Wataru Fujiya; Hajime Hiyagon; Yoshiki Makino; Naoji Sugiura; Naoto Takahata; Takafumi Hirata; Yuji Sano, The Physiological Society of Japan
    Geochemical Journal, 2018, [Reviewed]
  • Boron abundances and isotopic ratios of olivine grains on Itokawa returned by the Hayabusa spacecraft
    Wataru Fujiya; Peter Hoppe; Ulrich Ott
    METEORITICS & PLANETARY SCIENCE, Sep. 2016, [Reviewed]
  • Epoch-making meteorites (#8): Tagish Lake meteorite, derived from a D-type asteroid.
    Fujiya W.
    Planetary People (in Japanese), Sep. 2016, [Reviewed]
  • Sources of water and aqueous activity on the chondrite parent asteroids.
    Krot A. N.; Alexander C. M. O’D.; Nagashima K.; Ciesla F. J.; Fujiya W. and Bonal L.
    In Asteroids IV (P. Michel et al., eds.), Dec. 2015, [Reviewed]
  • Comprehensive study of carbon and oxygen isotopic compositions, trace element abundances, and cathodoluminescence intensities of calcite in the Murchison CM chondrite
    Wataru Fujiya; Naoji Sugiura; Yves Marrocchi; Naoto Takahata; Peter Hoppe; Kotaro Shirai; Yuji Sano; Hajime Hiyagon
    GEOCHIMICA ET COSMOCHIMICA ACTA, Jul. 2015, [Reviewed]
  • Sulfur in presolar silicon carbide grains from asymptotic giant branch stars
    Peter Hoppe; Katharina Lodders; Wataru Fujiya
    METEORITICS & PLANETARY SCIENCE, Jun. 2015, [Reviewed]
  • Correlated accretion ages and epsilon Cr-54 of meteorite parent bodies and the evolution of the solar nebula
    Naoji Sugiura; Wataru Fujiya
    METEORITICS & PLANETARY SCIENCE, May 2014, [Reviewed]
  • Ion microprobe Al-Mg dating for a single plagioclase grain in an Efremovka chondrule.
    Sano Y.; Takada M.; Takahata N.; Fujiya W. and Sugiura N.
    Geochemical Journal, Mar. 2014, [Reviewed]
  • EVIDENCE FOR RADIOGENIC SULFUR-32 IN TYPE AB PRESOLAR SILICON CARBIDE GRAINS?
    Wataru Fujiya; Peter Hoppe; Ernst Zinner; Marco Pignatari; Falk Herwig
    ASTROPHYSICAL JOURNAL LETTERS, Oct. 2013, [Reviewed]
  • Mn-Cr ages of carbonates in CI chondrites and the Tagish Lake ungrouped carbonaceous chondrite.
    Fujiya W.; Sugiura N.; Sano Y. and Hiyagon H., Lead
    Earth and Planetary Science Letters, Jan. 2013, [Reviewed]
  • 隕石中の炭酸塩の年代測定から探る含水小惑星の形成と進化
    藤谷渉, 太陽系の最初期に誕生した微惑星のうち,特に水や揮発性元素,有機物に富むもの(現在のC,D型小惑星)の形成過程を解明するため,隕石中の炭酸塩に対して,高精度かつ高確度のマンガン・クロム年代測定を行った.分析した4種類のCMコンドライトおよび4種類のCIコンドライト中の炭酸塩は太陽系形成から430-570万年後というほぼ同一の形成年代を示した.炭酸塩は水の存在する環境で形成し,酸素同位体などから形成したときの温度がわかっている.短寿命放射性核種の壊変熱を熱源と仮定して微惑星形成以後の熱史を数値計算し,炭酸塩の形成年代にその温度の水が存在するように微惑星の形成年代に制約を与えたところ,CM, CIコンドライトの母天体は太陽系形成から約350万年後に形成したことが明らかになった., The Japanese Society for Planetary Sciences
    日本惑星科学会誌「遊・星・人」, Dec. 2012, [Reviewed]
  • Exploring the neutrino mass hierarchy probability with meteoritic supernova material, v-process nucleosynthesis, and theta(13) mixing
    G. J. Mathews; T. Kajino; W. Aoki; W. Fujiya; J. B. Pitts
    PHYSICAL REVIEW D, May 2012, [Reviewed]
  • SULFUR MOLECULE CHEMISTRY IN SUPERNOVA EJECTA RECORDED BY SILICON CARBIDE STARDUST
    Peter Hoppe; Wataru Fujiya; Ernst Zinner
    ASTROPHYSICAL JOURNAL LETTERS, Feb. 2012, [Reviewed]
  • Evidence for the late formation of hydrous asteroids from young meteoritic carbonates
    Wataru Fujiya; Naoji Sugiura; Hideyuki Hotta; Koji Ichimura; Yuji Sano
    NATURE COMMUNICATIONS, Jan. 2012, [Reviewed]
  • In-situ chromium isotope measurement of chromium-rich fine grains in the Murchison CM2 chondrite.
    Fujiya W.; Sugiura N.; Takahata N. and Hiyagon H., Lead
    Geochemical Journal, Aug. 2011, [Reviewed]
  • HINTS FOR NEUTRINO-PROCESS BORON IN PRESOLAR SILICON CARBIDE GRAINS FROM SUPERNOVAE
    Wataru Fujiya; Peter Hoppe; Ulrich Ott
    ASTROPHYSICAL JOURNAL LETTERS, Mar. 2011, [Reviewed]
  • Mn/Cr relative sensitivity for calcium carbonate measured with a NanoSIMS.
    Sugiura N.; Ichimura K.; Fujiya W. and Takahata N.
    Geochemical Journal, Dec. 2010, [Reviewed]
  • 隕石中の炭酸塩のMn-Cr年代測定               
    藤谷渉; 杉浦直治; 市村康治; 高畑直人; 佐野有司, Lead
    日本惑星科学会誌「遊・星・人」, Jun. 2010, [Reviewed]

MISC

Books and other publications

  • 生命起源の事典 = Origin of life
    薮田, ひかる; 川村, 邦男; 赤沼, 哲史; 木賀, 大介; 根本, 直人; 古川, 善博; 横堀, 伸一; 生命の起原および進化学会, Contributor
    朝倉書店, Apr. 2024
    9784254160789

Lectures, oral presentations, etc.

  • 53Mn-53Cr ages of dolomite in Ryugu samples and the thermal history of the Ryugu parent body               
    Fujiya W.; Ushikubo T.; Sugawara S.; Yamaguchi A.; Fukuda K.; Lee M. R.; Terada K.; Bland P. A.; Travis B. J.
    Hayabusa 2024 Symposium, Nov. 2024
  • Oxygen isotopic compositions of dolomite in Ryugu samples: Constraints on the thermal history of the Ryugu parent body.               
    Fujiya W.; Ushikubo T.; Sugawara S.; Yamaguchi A.; Fukuda K.; Lee M. R.; Terada K.; Bland P. A.; Travis B. J.
    87th Annual Meteoritical Society Meeting, Jul. 2024
  • Oxygen isotopic composition of dolomite in Ryugu: New insights into the thermal history of the Ryugu parent body               
    Fujiya W.; Ushikubo T.; Sugawara S.; Yamaguchi A.; Fukuda K.; Lee M. R.; Terada K.; Bland P. A. and Travis B. J
    Hayabusa 2023 Symposium, Nov. 2023
  • On the Mn-Cr dating of Ryugu carbonates using ion-implanted standard materials               
    Fujiya W.; Kogiso R.; Sugawara S. and Hashizume K.
    86th Annual Meteoritical Society Meeting, Aug. 2023
  • Chronology of metasomatic/aqueous alteration               
    Fujiya W.; Krot A. N. and Pravdivtseva O. V.
    ISSI Workshop on “Evolution of the Solar System: Constraints from Meteorites”, Jun. 2023
  • Scientific importance of the sample analyses of Phobos regolith and the analytical protocols of returned samples by the MMX mission               
    Fujiya W.; Furukawa Y.; Sugahara H.; Koike M.; Bajo K.; Chabot N. L.; Miura Y. N.; Moynier F.; Russell S. S.; Tachibana S.; Takano Y.; Usui T. and Zolensky M. E.
    Hayabusa 2021 Symposium, Nov. 2021, [Invited]
  • Small body exploration for understanding of Earth’s building blocks               
    Fujiya W.
    ISAS Planetary Exploration Workshop 2021, Sep. 2021, [Invited]
  • 小惑星と火星圏の物質輸送(MMX)               
    藤谷渉
    第22回 惑星圏研究会, Feb. 2021, [Invited]
  • Material transport in the Solar System: Insights from MMX sample analysis               
    Fujiya W.
    4th MMX Science Team Meeting, Feb. 2021, [Invited]
  • Evolution of thermally metamorphosed C-complex asteroids inferred from a heated CM chondrite Jbilet Winselwan               
    Fujiya W.; Higashi H.; Hibiya Y.; Sugawara S.; Yamaguchi A.; Kimura M. and Hashizume K.
    JpGU-AGU Joint Meeting 2020: Virtual, Jul. 2020, [Invited]
  • 「惑星材料・揮発性物質の分布・供給」のマイルストーン               
    藤谷渉
    惑星科学探査の将来構想検討会:RFI回答文書改訂2019, Oct. 2019, [Invited]
  • 小惑星の揮発性物質存在量               
    藤谷渉
    2019年度日本地球化学会年会, Sep. 2019, [Invited]
  • Primitive meteorites with abundant water.               
    Fujiya W.
    JSPS Core-to-Core Program “Planet2” Symposium 2017, Feb. 2017, [Invited]
  • 水質変成の年代学と物質進化               
    藤谷渉
    衝突研究会2016, Nov. 2016, [Invited]
  • プレソーラー炭化ケイ素粒子の硫黄同意体組成、元素存在度               
    藤谷渉
    「プレソーラー粒子から探る星間ダストの進化と太陽系の起源」研究会, Sep. 2016, [Invited]
  • Current status and future prospect of isotope cosmochemistry and mass spectrometry.               
    Fujiya W.
    Pre-Forum Meeting on Future Cosmochemistry for the JSPS “Science in Japan Forum 2016, Jun. 2016, [Invited]
  • 含水コンドライト母天体の形成年代・場所               
    藤谷渉
    日本地球惑星科学連合大会2015年大会, May 2015, [Invited]
  • Lithium, boron and light noble gas analyses on the surface of the Itokawa asteroidal regolith returned by the Hayabusa mission.               
    Fujiya W.; Hoppe P.; Ott U. and Meier M. M. M.
    Hayabusa 2013: Symposium of the Solar System Materials, Oct. 2013, [Invited]

Affiliated academic society

  • Japan Geoscience Union
  • The Japanese Society for Planetary Sciences
  • The Geochemical Society of Japan
  • American Geophysical Union
  • Geochemical Society
  • The Meteoritical Society

Research Themes

Social Contribution Activities

  • いん石からひもとく太陽系の歴史、地球のなりたち              
    appearance
    特定非営利活動法人ひと・まちねっとわーく, いばらき子ども大学, 07 Dec. 2024

Media Coverage

  • 隕石誕生 木星の外でも           
    読売新聞社, 読売新聞, 28 Jul. 2019, Paper
  • 40億年前に土星や天王星が大移動? 隕石の分析で           
    日本放送協会, おはよう日本, 13 Jul. 2019, Media report
  • 小惑星 木星の外側で誕生→移動?           
    中日新聞東京本社, 東京新聞, 03 Jul. 2019, Paper
  • 小惑星の大きな移動、隕石分析で解明 茨城大など           
    日本経済新聞社, 日本経済新聞, 02 Jul. 2019, Paper
  • 小惑星誕生に新年代測定法 東大理学系研究科博士課程の藤谷さんら提案           
    朝日新聞社, 朝日新聞, 30 Jan. 2012, Paper
  • 水を含む小惑星の形成、太陽系誕生の350万年後、東大チームが分析・解明           
    日本経済新聞社, 日本経済新聞, 18 Jan. 2012, Paper

Academic Contribution Activities

  • 日本惑星科学会 2022年秋季講演会LOC委員               
    Planning etc
    2022 - 2022
  • The 82nd Annual Meeting of the Meteoritical Society, Local organizing committee               
    Planning etc
    2019 - 2019