Kanako SUZUKIAssociate Professor

■Researcher basic information

Organization

  • College of Science Department of Sciences Mathematics and Informatics
  • Graduate School of Science and Engineering(Master's Program) Major in Science
  • Graduate School of Science and Engineerin(Doctoral Program) Major in Complex Systems Science
  • Faculty of Basic Natural Science Domain of Mathematics and Informatic

Research Areas

  • Natural sciences, Mathematical analysis, Mathematical analysis

Research Keyword

  • Nonlinear partial differential equation
  • reaction-diffusion systems, pattern formation

Degree

  • 2006年03月 博士(理学)(東北大学)
  • 2003年03月 修士(理学)(東北大学)

Educational Background

  • Mar. 2006, Tohoku University, Graduate School of Science
  • Mar. 2001, Tohoku University, Faculty of Science

Career

  • Apr. 2011 - Mar. 2012, Graduate School of Information Sciences, Tohoku University, Assistant Professor
  • Feb. 2008 - Mar. 2011, Institute for International Advanced Interdisciplinary Research, Tohoku University, Assistant Professor

■Research activity information

Paper

  • Stable discontinuous stationary solutions to,reaction-diffusion-ODE systems
    Szymon Cygan; Anna Marciniak-Czochra; Grzegorz Karch and Kanako Suzuki
    Communications in Partial Differential Equations, 10 Apr. 2023, [Reviewed]
  • Instability of all regular stationary solutions to,reaction-diffusion-ODE systems
    Journal of Differential Equations, 28 Aug. 2022, [Reviewed]
  • Dispersive estimates for quantum walks on 1D lattice
    Masaya MAEDA; Hironobu SASAKI; Etsuo SEGAWA; Akito SUZUKI; Kanako SUZUKI, Masaya MAEDA, Hironobu SASAKI, Etsuo SEGAWA, Akito SUZUKI, Kanako SUZUKI, Mathematical Society of Japan (Project Euclid)
    J. Math. Soc. Japan, 27 Jan. 2022, [Reviewed]
  • Criterion toward understanding non-constant solutions to p-Laplace,Neumann boundary value problem
    Kanako Suzuki
    Mathematical Journal of Ibaraki University, 16 Nov. 2020, [Reviewed]
  • Dynamics of solitons for nonlinear quantum walks
    M. Maeda; H. Sasaki; E. Segawa; A. Suzuki; K. Suzuki, Lead, Abstract
    We present some numerical results for nonlinear quantum walks (NLQWs) studied by the authors analytically (Maeda et al 2018 Discrete Contin. Dyn. Syst.
    38 3687–3703; Maeda et al 2018 Quantum Inf. Process.
    17 215). It was shown that if the nonlinearity is weak, then the long time behavior of NLQWs are approximated by linear quantum walks. In this paper, we observe the linear decay of NLQWs for range of nonlinearity wider than studied in (Maeda et al 2018 Discrete Contin. Dyn. Syst.
    38 3687–3703). In addition, we treat the strong nonlinear regime and show that the solitonic behavior of solutions appears. There are several kinds of soliton solutions and the dynamics becomes complicated. However, we see that there are some special cases so that we can calculate explicit form of solutions. In order to understand the nonlinear dynamics, we systematically study the collision between soliton solutions. We can find a relationship between our model and a nonlinear differential equation., IOP Publishing
    Journal of Physics Communications, 03 Jul. 2019, [Reviewed]
  • Scattering and inverse scattering for nonlinear quantum walks
    Masaya Maeda; Hironobu Sasaki; Etsuo Segawa; Akito Suzuki; Kanako Suzuki, American Institute of Mathematical Sciences
    Discrete and Continuous Dynamical Systems- Series A, 01 Jul. 2018, [Reviewed]
  • Dynamical spike solutions in a nonlocal model of pattern formation
    Anna Marciniak-Czochra; Steffen Härting; Grzegorz Karch; Kanako Suzuki, Institute of Physics Publishing
    Nonlinearity, 27 Mar. 2018, [Reviewed]
  • Weak limit theorem for a nonlinear quantum walk
    Masaya Maeda; Hironobu Sasaki; Etsuo Segawa; Akito Suzuki; Kanako Suzuki, Lead, 非線形量子ウォークの漸近挙動について考察した。, Springer Science and Business Media LLC
    Quantum Information Processing, 2018, [Reviewed]
  • Instability of turing patterns in reaction-diffusion-ODE systems
    Anna Marciniak-Czochra; Grzegorz Karch; Kanako Suzuki
    JOURNAL OF MATHEMATICAL BIOLOGY, Feb. 2017, [Reviewed]
  • FINITE-TIME BLOWUP OF SOLUTIONS TO SOME ACTIVATOR-INHIBITOR SYSTEMS
    Grzegorz Karch; Kanako Suzuki; Jacek Zienkiewicz
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, Sep. 2016, [Reviewed]
  • DIFFUSION-DRIVEN BLOWUP OF NONNEGATIVE SOLUTIONS TO REACTION-DIFFUSION-ODE SYSTEMS
    Anna Marciniak-Czochra; Grzegorz Karch; Kanako Suzuki; Jacek Zienkiewicz
    DIFFERENTIAL AND INTEGRAL EQUATIONS, Jul. 2016, [Reviewed]
  • Concentration of least-energy solutions to a semilinear Neumann problem in thin domains
    Masaya Maeda; Kanako Suzuki
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, Mar. 2014, [Reviewed]
  • Unstable patterns in reaction-diffusion model of early carcinogenesis
    Anna Marciniak-Czochra; Grzegorz Karch; Kanako Suzuki
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, May 2013, [Reviewed]
  • Blow-up versus global existence of solutions to aggregation equation with diffusion               
    Grzegorz Karch; Kanako Suzuki, Lead
    Applicationes Mathematicae, 2011, [Reviewed]
  • Mechanism generating spatial patterns in reaction-diffusion systems
    Kanako Suzuki, In 1952, A. M. Turing proposed the notion of "diffusion-driven instability" in his attempt of modeling biological pattern formation. Following his ingenious idea, many reaction-diffusion systems have been proposed later on. On the other hand, Turing patterns can be explained by some cellular automata. Cellular automata are theoretical models which consist of a regular grid of cells, and they exhibit the complex behavior from quite simple rules. In this paper, we describe the mathematical properties of reaction-diffusion systems modeling pattern formation, in particular, Turing patterns. Moreover, we explain ideas which connect differential equations with cellular automata., Graduate School of Information Sciences, Tohoku University
    Interdiscip. Inform. Sci., 2011, [Reviewed]
  • Spikes and diffusion waves in one-dimensional model of chemotaxis
    Grzegorz Karch; Kanako Suzuki, Lead
    Nonlinearity, 2010, [Reviewed]
  • Collapes of patterns and effect of basic production terms in some reaction-diffusion systems               
    Kanako Suzuki; Izumi Takagi, Lead
    GAKUTO International Series, Mathematical Sciences and Applications, Current Advances in Nonlinear Analysis and Related Topics, 2010
  • Behavior of solutions an activator-inhibitor system with basic production terms               
    Kanako Suzuki; Izumi Takagi, Lead
    Proceedings of Czech-Japanese Seminar in Applied Mathematics, COE Lect. Note, Kyushu Univ., 2009, [Reviewed]
  • On the role of source terms in an activator-inhibitor system proposed by Gierer and Meinhardt               
    Kanako Suzuki; Izumi Takagi, Lead
    Advanced Studies in Pure Mathematics, 2007, [Reviewed]
  • Determination of the limit sets of trajectories of the Gierer-Meinhardt system without diffusion               
    Wei-Ming; Ni; Kanako Suzuki; Izumi Takagi, Lead
    Advanced Studies in Pure Mathematics, 2007, [Reviewed]
  • The dynamics of a kinetic activator-inhibitor system
    Wei-Ming Ni; Kanako Suzuki; Izumi Takagi, Lead
    J. Differential Equations, 2006, [Reviewed]

Lectures, oral presentations, etc.

  • Stability of stationary solutions to reaction-diffusion-ODE systems               
    Turing symposium on Morphogenesis, 2024, 09 Feb. 2024, [Invited]
  • Instability and diffusion-driven blowup in some reaction-diffusion-ODE systems               
    Kanako Suzuki
    RIMS Workshop "Recent Trend in Ordinary Differential Equations and Their Developments", 15 Nov. 2019, [Invited]
  • Spatial patterns of some reaction-diffusion-ODE systems               
    Kanako Suzuki
    Modeling Biological Phenomena by Parabolic PDEs and their Analysis, 07 Jun. 2019, [Invited]
  • Reaction-diffusion-ODE systemの定常解の不安定性と解の挙動               
    北陸応用数理研究会2018, 20 Feb. 2018, [Invited]
  • Reaction-diffusion-ODE systemの定常解の安定性とダイナミクス               
    鈴木香奈子
    RIMS共同研究(公開型)「非線形現象と反応拡散方程式」, 27 Oct. 2017, [Invited]
  • Unstable patterns and phenomena in some reaction- diffusion-ODE systems               
    鈴木香奈子
    RIMS共同研究(グループ型)「反応拡散方程式と非線形分散型方程式の解の挙動」, 27 Sep. 2017, [Invited]
  • Turing不安定性をもつReaction-diffusion-ODE 系のダイナミクスと空間パターン               
    鈴木 香奈子
    拡散成分と非拡散成分が共存する反応拡散系がつくるパターン, 12 Feb. 2017, [Invited]
  • Turing不安定性をもつreaction-diffusion-ODE systemの解のダイナミクス               
    鈴木 香奈子
    Turing機構に関連するパターンとダイナミクス, 19 Dec. 2015, [Invited]
  • Unbounded solutions to some reaction-diffusion-ODE systems modeling pattern formation               
    Kanako Suzuki
    Shapes and other properties of the solutions of PDEs, 12 Nov. 2015, [Invited]
  • Reaction-diffusion-ODE system から考えるパターン形成-Turing不安定性とダイナミクス               
    鈴木 香奈子
    生物現象におけるパターン形成と数理, 23 Oct. 2015, [Invited]
  • Blowup phenomena in some reaction-diffusion-ODE systems induced by Turing instability               
    鈴木 香奈子
    パターン生成とダイナミクスの解構造の探究, 28 Jun. 2015, [Invited]
  • Turing instability and spatial patterns to reaction-diffusion equations modeling biological pattern formation               
    Kanako Suzuki
    Mini-Workshop on Models of Directional Movement and their Analysis, 27 Mar. 2015
  • Instability of spatial patterns and blowup phenomena in a model of pattern formation               
    Kanako Suzuki
    SNP2013 Winter, 01 Feb. 2014
  • Instability and blowup phenomena induced by diffusion in some reaction-diffusion-ODE systems               
    Kanako Suzuki
    RIMS Workshop on Mathematical Analysis of Pattern Formation Arising in Nonlinear Phenomena, 11 Nov. 2013
  • Dynamics of some reaction-diffusion-ODE systems with autocatalysis property               
    鈴木 香奈子
    第3回明治非線型数理セミナー, 08 Nov. 2013
  • Instability and blowup phenomena induced by diffusion in a model of pattern formation               
    Kanako Suzuki
    Workshop on Nonlinear Partial Differential Equations -- Japan-China Joint Project for Young Mathematicians 2013, 25 Oct. 2013
  • 非拡散物質を含む反応拡散系を用いてパターン形成を考える               
    鈴木 香奈子
    2013年日本数学会秋季総合分科会 応用数学分科会, 25 Sep. 2013, [Invited]
  • 細い領域における半線形楕円型方程式の解の集中点について               
    鈴木 香奈子
    非線形現象の数値シミュレーションと解析2013, 08 Mar. 2013
  • パターン形成を記述する反応拡散系における拡散の役割を考える               
    鈴木 香奈子
    クロスボーダーセミナー, 14 Jan. 2013
  • Behavior of solutions of some reaction-diffusion equations with autocatalysis property               
    Kanako Suzuki
    Swiss-Japanese Seminar, 18 Dec. 2012
  • Large time behavior of solutions of some reaction-diffusion equations with Turing instability               
    Kanako Suzuki
    Turing Symposium on Morphogenesis---Mathematical Approaches Sxty Years after Alan Turing---, 30 Aug. 2012
  • Stability of patterns in some reaction-diffusion systems with the diffusion-driven instability               
    Kanako Suzuki
    9th AIMS International Conference on Dynamical Systems, Differential Equations and Applications, 03 Jul. 2012
  • Pattrens in systems of a single reaction-diffusion eauation coupled with ODE equations               
    Kanako Suzuki
    Second Italian-Japanese Workshop "Geometric Properties for Parabolic and Elliptic PDE's", 21 Jun. 2011
  • Asysmptotic Behaviour of solutions to one-dimensional nonlocal transport equation               
    Kanako Suzuki
    International Winter School Mathematical Analysis of Fluid Mechanics, 08 Feb. 2011
  • Patterns of the shadow system with nontrivial basic production terms               
    Kanako Suzuki
    Concentration and Related Topics on Nonlinear Problems, 22 Nov. 2010
  • Patterns in a reaction-diffusion model of early carcinogenesis               
    Kanako Suzuki
    Mini-Workshop on Modeling, Simulations and Analysis of Biological PAttern Formation, 30 Oct. 2010
  • Steady-state patterns of the shadow system with nontrivial basic production terms               
    Kanako Suzuki
    Partial Differential Equations in Mathematical Biology, 13 Sep. 2010
  • Spikes and siffusion waves in one-dimensional model of chemotaxis               
    Kanako Suzuki
    Nonlocal operators and partial differential equations, 29 Jun. 2010

Affiliated academic society

  • 日本数学会
  • 日本数理生物学会

Research Themes

  • 拡散-非拡散反応系における外力とダイナミクスの関連               
    Apr. 2023 - Mar. 2027
  • 定常解が連続体をなす反応拡散系の非定常問題の解の挙動               
    Apr. 2023 - Mar. 2026
  • 拡散誘導不安定化と非拡散過程が織り成す反応拡散系のダイナミクス探求               
    基盤研究(C)
    Apr. 2018 - Mar. 2024
  • Fundamental theory of reaction-diffusion equations with variable coefficients---a panorama in Turing's sight
    Grant-in-Aid for Scientific Research (C)
    Tohoku University
    Apr. 2019 - Mar. 2023
  • 拡散-非拡散物質から成る反応系における相互作用とダイナミクスの関連性の探究               
    基盤研究(C)
    Apr. 2014 - Mar. 2017
  • 空間非一様パターンを形成する反応拡散系がもつ構造の体系的理解               
    Grant-in-Aid for Young Scientists(B)
    Apr. 2011 - Mar. 2013

Academic Contribution Activities

  • Turing symposium on Morphogenesis, 2024               
    Planning etc
    Tohoku University, 08 Feb. 2024 - 10 Feb. 2024